
International Journal of scientific research and management (IJSRM)
||Volume||3||Issue||1||Pages|| 2010-2014 ||2015||
Website: www.ijsrm.in ISSN (e): 2321-3418

B.Doss
1 IJSRM volume 3 issue 1 Jan 2015 [www.ijsrm.in] Page 2010

Low-Power and Low-Area Adaptive FIR Filter Based

on DA Using FPGA

B.Doss
1
, K.Soundararajan

2
, Y. Narasimha Murthy

3

1Dept. of Electronics and Communication Engineering, JNTUACEA, India

2Principal , KITES Engineering College, India

3READER, SSBN Degree and PG College, India

 Abstract- This paper presents an innovative pipelined architecture for the implementation of adaptive filter based on distributed

arithmetic (DA) with low-area, low-power. The high throughput rate of the proposed design is achieved by updating the lookup table

simultaneously and parallel implementation of filtering and weight-update operations. In order to reduce the sampling period and area

complexity, the proposed method uses conditional signed carry-save accumulation for the purpose of DA-based inner-product computation

in the place of conventional adder-based shift accumulation. In order to reduce the power consumption, the proposed design uses a faster

bit clock for carry-save accumulation but it uses a much slower clock for the remaining operations. The proposed design involves the same

number of multiplexers but a smaller LUT and the number of adders used reduces to half when compared to the existing DA-based design.

 Keywords – Adaptive FIR filter, Distributed Arithmetic, carry-

save accumulation, Adaptive LMS algorithm.

INTRODUCTION

 Adaptive filters are the most important and useful blocks in

the several digital signal processing applications. The most

popular adaptive filter is the tapped-delay line finite impulse

response (FIR) whose weights are updated by the well known

Widrow-Hoff least mean square (LMS) algorithm. Its popularity is

not only due to its simplicity but also due to its better convergence

performance [2]when compared to the other algorithms.

 The direct form configuration on the forward path of the FIR

filter results in a long critical path due to an inner product

computation to obtain a filter output. Hence there is a necessity to

reduce the critical path of the structure, when the input signal has a

high sampling rate so that the critical path could not exceed the

sampling period.

 Of late, the multiplier less distributed arithmetic (DA) -

based technique [4] has gained much popularity because of its

high-throughput processing capability and regularity which results

in economic and area-time efficient computing structures.

Hardware-efficient DA-based design of adaptive filter has been

suggested by Allred et al [4] using two separate lookup tables

(LUTs) for filtering and weight update. However, the above

structure do not support high sampling rate since they involve

several cycles for LUT updates for each new sample. In this paper,

we have proposed an efficient architecture for high speed DA-

based adaptive filter with very low adaptation delay.

 This paper proposes an innovative DA-based architecture for

low-power, low-area and high-throughput pipelined

implementation of adaptive filter with very low adaptation delay.

The key points of this paper are as follows:

 1.By updating the Look Up Tables (LUTs) concurrently, we can

increase the throughput rate significantly.

2.Concurrent implementation of filtering and weight updating

further enhances the throughput rate.

3. Conventional adder-based shift accumulation is replaced by a

conditional carry-save accumulation of signed partial inner

products to reduce the sampling period. The bit cycle period

amounts to memory access time plus 1-bit full-adder time by

carry-save accumulation.

4.The use of the proposed signed carry-save accumulation also

helps to reduce the area complexity of the proposed design.

5. By using a faster clock for carry-save accumulation and a

much slower clock for all other operations, we can reduce the

power consumption significantly.

II.REVIEW OF ADAPTIVE LMS ALGORITHM

 The least mean squares (LMS) algorithm minimizes the

cost function by adjusting the filter coefficients. The standard

LMS algorithm performs the following operations to update the

coefficients of an adaptive filter:

1.It updates the filter coefficients in the following way

 (1)

2. Calculates the error signal e(n) by using the following

equation

 (2)

3. Calculates the output signal y(n) from the adaptive filter.

 (3)

 where μ is the convergence factor of the adaptive

filter, is the filter coefficients vector, and is the filter

input vector, d(n) is the desired response

In the case of pipelined structures, the feedback error signal

becomes available after certain number of cycles, called

“adaptation delay”. The pipelined structures therefore uses the

delayed error for updating the current weights

http://zone.ni.com/reference/en-XX/help/372357A-01/lvaftconcepts/aft_algorithms/#calculate_yn

B.Doss
1 IJSRM volume 3 issue 1 Jan 2015 [www.ijsrm.in] Page 2011

adaptation instead of using the most recent error where ‘m’ is the

delay. The weight update equation for such delayed LMS

adaptive filter is given by

III. DA-BASED APPROACH FOR INNER-PRODUCT

COMPUTATION

 The LMS adaptive filter needs to perform inner-product

computations in each cycle which contributes to most of the

critical path. The inner product of the output expression of the

LMS adaptive algorithm can be given as

 Where and for 0 ≤ k ≤ N-1 form the N-point vector inputs

respectively.

 Each and every component of the weight vector can be expressed

in 2’s complement representation assuming L to be the bit length

of the weight.

 Here denotes the lth bit of . Substituting eq.(5) in eq.(4) we

can write an expanded form for eq.(4) given as

 In order to convert the sum-of-products form of the eq.(4) into

adistributed form, we have to interchange the order of summations

over the indices k and l in eq.(6) , which results in the following

equation

 The inner-product given by the above equation can be computed

as

 Since any element of the N-point bit sequence can be either zero or

one, the partial sum for l = 0,1,….,L-1 can have possible

values. If all the possible values of are already computed

and stored in a LUT, the partial sums can be taken out from the

LUT using the bit sequence as address for computing the

inner product.
 The inner-product of eq.(8) can therefore be calculated in

L cycles of shift accumulation, followed by LUT-read

operations corresponding to L number of bit slices for 0 ≤

l ≤ L-1 as shown in fig.1. Since the shift accumulation in fig.1

involves significant critical path, we perform the shift

accumulation using carry-save accumulator as shown in fig.2.

The bit slices of vector are fed one by one in the LSB to

MSB order to the carry-save accumulator. However, the 2’s

complement of the LUT output needs to be accumulated in the

case of MSB slices. Therefore, all the output bits of LUT are

passed through the XOR gates with a sign-control which is set

to one only when the MSB slice appears as an address. Thus the

XOR gates produce the one’s complement of the LUT output

corresponding to the MSB slice they won’t affect the output of

other bit slices. Finally, the sum and carry words obtained as

result after L clock cycles are added by the final adder and the

input carry to the final adder is set to one to account for 2’s

complement operation of the LUT output corresponding to the

MSB slice.

Fig.1 Conventional DA-based implementation of four-point

inner product.

The content of the kth LUT location can be expressed as

Here is the (j+1)th bit of N-bit binary representation of

integer k for 0 ≤ k ≤ -1. Here for 0 ≤ k ≤ -1 can be

precomputed and stored in a LUT of words, which is

RAM-based. However, instead of storing words in LUT,

we store -1) registers. An example for such a DA table for

N=4 is as shown in fig.3. which contains only 15 registers to

store the precomputed sums of input words. Seven new

valuesof are computed by seven adders in parallel.

IV. DA-BASED ADAPTIVE FILTER STRUCTURE

 In order to compute the large ordered adaptive filters for

our convenience, we are decomposing them into small adaptive

filtering blocks, since Distributed Arithmetic-based

implementation of inner product of long vectors requires a very

large LUT [5].Hence we are discussing the 4
th

 order DA-based

adaptive filter followed by the large orders in the following

sections.

A.Proposed Structure for 4
th

 order Adaptive filter

 The proposed structure for 4
th

 order adaptive filter (N=4) is

shown in the fig. Generally, it consists of a four-point inner

product block, a weight increment block and the circuit for

generating error ‘e’, and a control word generator that generates

the control word ‘t’ for the barrel shifters.

 The four point inner product block which was shown in fig.

consists of a DA-table which has an array of 15 registers which

is capable of storing the partial inner products ‘y’, for 0 < l ≤

15 and a 16:1 multiplexer is used to select one of those registers

at any particular instant

B.Doss
1 IJSRM volume 3 issue 1 Jan 2015 [www.ijsrm.in] Page 2012

 Weights A={w₃,w₂,w₁,w₀} for 0 ≤ l ≤ L-1 are fed to the

multiplexer as control bits in the LSB-MSB order. The output

of the MUX is then fed to the carry-save accumulation block.

After L clock cycles, the carry-save accumulation block shift

accumulates all the partial inner products and generates a sum

word and a carry word of size L+2 bit length each.

The sum word is shifted right by one position right and added

to the carry to generate the filter output y(n-1) which is then

subtracted from the desired signal d(n) to obtain the error e(n).

 After that the sign-magnitude separator is used to separate

the sign bit and magnitude bits from the obtained error.

 The magnitude bits are used by the control word generator

to generate the control word ‘t’ for the barrel shifter.

D

D

D

D

D

D

D

D

D

D

D

D

D

D

D

x(n)

x(n-1)

x(n)+x(n-1)

x(n-2)

x(n)+x(n-2)

x(n-1)+x(n-2)

x(n)+x(n-1)+x(n-2)

x(n-3)

x(n-1)+x(n-3)

x(n-2)+x(n-3)

x(n-1)+x(n-2)+x(n-3)

x(n)+x(n-3)

x(n)+x(n-1)+x(n-3)

x(n)+x(n-2)+x(n-3)

x(n)+x(n-1)+x(n-2)+x(n-3)

16-

to-1

MUX

CSA

ACCMUL-

ATION

D D

4-POINT INNER -

PRODUCT BLOCK

WEIGHT-INCREMENT

BLOCK

+

+ D

D D

D

>>4

>>4

CONTROL WORD

GENERATOR

GGENERATOR

SIGN-MAG

SEPARATOR

D D D D

WORD-PARALLEL BIT-SERIAL CONVERTER

BS-0

± ± ± ±

BS-0 BS-0 BS-0

x(n+1)

x(n)

X(n-1)

x(n)+x(n-1)

x(n-2)

x(n-1)+x(n-2)+x(n-3)

x(n)+x(n-2)

x(n-1)+x(n-2)

x(n)+x(n-1)+x(n-2)

x(n-3)

x(n-1)+x(n-3)

x(n-2)+x(n-3)

x(n)+x(n-3)

x(n)+x(n-1)+x(n-3)

x(n)+x(n-2)+x(n-3)

x(n)+x(n-1)+x(n-2)+x(n-3)

DA-TABLE

‘0’

x(n+1)

x(n) x(n-1) x(n-2) x(n-3)

A={ }

Sign control

 x(n-1)
S

C
 Y(n-1)

d(n)

 (n-2)

Sign ((n-2))

 ()

 X(n-2) x(n-3) x(n-4) x(n-3)

t

Sign ((n-2))

 ()

d(n)

Fig. 2 DA table for generation of possible sums of input samples.

Fig.4 Structure of DA-based LMS adaptive filter of filter length

N=4

Fig. 3 Structure of four point inner product block

Fig.5 Structure of weight increment block for N=4

B.Doss
1 IJSRM volume 3 issue 1 Jan 2015 [www.ijsrm.in] Page 2013

 16-bit data computing block

The magnitude bits are used by the control word generator t

The logic used for the generation of control word ‘t’ for barrel

shifter is shown in the fig.7

The convergence factor ‘µ’ is taken as 1/N. Generally, we can take

µ as /N, where ‘i’ is a small integer.

The weight increment unit for N=4 consists of four barrel shifters

and four adder/subtractor cells. The barrel shifter shifts the input

values where k=0,1,….N-1 by defined number of locations.

Barrel shifter yields the number of increments to be added or

subtracted from the present weights. The sign bit from the sign-

magnitude separator is used as the control for adder/subtractor cells

such that depending on the value of the sign bit whether it is zero

or one, the barrel shifter output is respectively added to or

subtracted from the content of the corresponding current value in

the weght register. We can extend the structure of DA-based LMS

adaptive filter to length N = 16 and N = 32

B. Proposed structure for higher order Adaptive filter with N=16

and N=32

 Now, the help of 4
th

 order adaptive FIR filter, we can design

adaptive filters of length N=16 and N=32.

 In order to implement the 16
th

 order adaptive FIR filter, we are

making use of four sets of 4-point inner product blocks and weight

increment blocks and they are connected appropriately as shown in

the fig.6. The sub block consisting of these 4-point inner product

blocks and weight increment blocks is known as 16-bit data

computing block since it computes the 16-bit sum and carry words

which are used in the further processing steps.

 In order to implement the 16
th

 order adaptive FIR filter, we

are making use of four sets of 4-point inner product blocks and

weight increment blocks and they are connected appropriately

as shown in the fig.6. The sub block consisting of these 4-point

inner product blocks and weight increment blocks is known as

16-bit data computing block since it computes the 16-bit sum

and carry words which are used in the further processing steps.

 Four carry-in bits should be added to sum words which are

output of four 4-point inner-product blocks. Since the carry

words are of double the weight compared to the sum words,

two carry-in bits are set as input carry at the first level binary

adder tree of carry words, which is equivalent to inclusion of

four carry-in bits to the sum words. Outputs of sign-magnitude

separator and control word generator are fed commonly to all

the weight increment blocks. Further, the filtering process is

same as that of the 4
th

 order adaptive FIR filter except that the

process is performed on 16-bit data instead of 4-bit data.

 Similarly, we can extend the 16-bit structure to 32-bit

structure by using two 16-bit data computing blocks as shown

in the fig.8. By performing the binary addition of 16-bit sum

and carry of the two blocks, we are able to generate sum and

carry words of length N=32.

S₀(n) C₀(n)
4-POINT INNER PRODUCT

BLOCK-0
x(n) x(n-1) x(n-2) x(n-3)

S₁(n) C₁(n)
4-POINT INNER PRODUCT

BLOCK-1
x(n-4) x(n-5) x(n-6) x(n-7)

S₂(n) C₂(n)
4-POINT INNER PRODUCT

BLOCK-2
x(n-8) x(n-9) x(n-10) x(n-11)

S₃(n) C₃(n)
4-POINT INNER PRODUCT

BLOCK-3
x(n-12) x(n-13) x(n-14) x(n-15)

WEIGHT INCREMENT

BLOCK-0

WEIGHT INCREMENT

BLOCK-1

WEIGHT INCREMENT

BLOCK-2

WEIGHT INCREMENT

BLOCK-3

D

D D

+

 +

+

+

+

+

+

>>1 >>4 + +

SIGN-MAG

SEPARATOR

CONTROL WORD

GENERATOR

GGENERATOR

x(n+1)

D

 (n-2)

Fig. 6 Structure of DA-based LMS adaptive filter of length N=16 and

P=4

If r₆=1 then t= “000”;

Else if r₅=1 then t=”001”;

Else if r₄=1 then t=”010”;

Else if r₃=1 then t=”011”;

Else if r₂=1 then t=”100”;

Else if r₁=1 then t=”101”;

Else if r₀=1 then t=”110”;

Else then t=”111”

r=abs ((n-2)

 = i th bit of 7-bit word r

Fig.7 Logic used for the

generation of control

word t for the barrel

shifter for L=8

B.Doss
1 IJSRM volume 3 issue 1 Jan 2015 [www.ijsrm.in] Page 2014

V. SYNTHESIS RESULTS

COMPARISION OF HARDWARE COMPLEXITIES OF

DIFFERENT ARCHITECTURES

 We have coded the proposed & existing designs in

VHDL and synthesized by Xilinx ISE Design tool 13.2 using a

95-nm CMOS library for filter length N = 16 and N = 32 to find

the area, time, and power capabilities. The FPGA used is

Spartan 3E, device used is XC3S500E, package used is FG320

and speed is -4. In the above table, we have shown the synthesis

results in terms of no. of slices, no. of slice flip flops and the

no. of 4-input LUTs used. From the synthesis reports, we find

that the power consumption was 81 milli watts and remains

almost constant even though the order of the adaptive filter is

increased to N = 16 and N = 32.

VI. CONCLUSION

 Through this paper, we have tried to suggest an efficient

and reduced LUT architectures which can provide low-power

and low area implementation of DA-based adaptive filter. We

have used carry-save accumulation scheme of signed partial

inner products for the computation of filter output

Even though we have increased the filter order, we are

successful in limiting the power consumption to 81 milli watts

as that of the lower order structures.

FUTURE SCOPE

 We can reduce the DA-table structure using Offset binary

coding. With this coding technique, we can reduce LUT

structure to half of its original size for reducing the physical

area for efficient implementation of Distributed Arithmetic.

REFERENCES

[1] Sang Yoon Park and Promod Kumar Meher, “Low-

 power, High-Throughput, and Low-area Adaptive FIR

 Filter Based on Distributed Arithmetic,” IEEE Trans. On

 Circuits and Systems-II, Express Briefs, Vol.60, no.6,

 pp.346-350, June 2013.

 [2] S. Haykin and B. Widrow, Least-Mean-Square Adaptive

 Filters. Hoboken, NJ, USA: Wiley, 2003.

[3] S. A. White, “Applications of the distributed arithmetic to

 digital signal processing: A tutorial review,” IEEE ASSP

 Mag., vol. 6, no. 3, pp. 4–19, Jul. 1989.

[4] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.

 Anderson, “LMS adaptive filters using distributed

 arithmetic for high throughput,” IEEE Trans. Circuits

 Syst. I, Reg. Papers, vol. 52, no. 7, pp. 1327–1337, Jul.

 2005.

[5] .R. Guo and L. S. DeBrunner, “A novel adaptive filter

 implementationscheme using distributed arithmetic,” in

 Proc. Asilomar Conf. Signals,Syst., Comput., Nov. 2011,

 pp.160–164.

Filter

Length, N

No. of

slices

No. of

slice

flipflops

No. of 4-i/p

LUTs

4 252 271 469

8 406 464 733

16 838 912 1509

32 1287 1376 2313

Availability 4656 9312 9312

	standard

