# A Generalized Andre Plane of order $3^{4}$ 

K.Annapurna ${ }^{1}$, Sarada Kesiraju ${ }^{2}$<br>Former Head, Department of Mathematics<br>Head, Department of Mathematics and Statistics<br>RBVRR Women's College, Narayanguda, Hyderabad -500027,T.S.<br>e-mail ${ }^{1}$ : annapurnakamaraju@yahoo.com<br>e-mail ${ }^{2}$ : sarada.koride@gmail.com

Summary: A translation plane of order $3^{4}$ is constructed. It is shown that the plane is a generalized Andre plane and computed the translation complement of the plane .It is found to be of order 6400.

## 1. Introduction

Rao and Davis have given [14] the construction of translation planes through t-spread sets. It may be recalled that Bruck and Bose have contributed to the theory of $t$-spread sets over finite fields for the construction of non Desarguesian translation planes through their papers [ 1] , [2 ] . In this paper we have constructed a translation plane $\pi$ of order $3^{4}$ using 3 -spread sets. This plane is shown to be a generalized Andre plane applying the technique given by D.A.Foulser [6]. By making use of the properties of the collineation groups of the plane $\pi$ the translation complement of the plane $\pi$ is computed and found to be of order 6400.

## 2. Description of the plane $\pi$ and identifying the plane as a generalized Andre system

It is well known that a translation plane $\pi$ of finite order can be coordinatized by a V-W system. Conversely given a V-W system ( $\mathrm{Q},+, \cdot)$ a translation plane $\pi(\mathrm{Q})$ can be associated with Q [8,pp 362]. A V-W system can be constructed from a t -spread set.[1,pp95]. Thus the construction of translation plane of order $\mathrm{q}^{\mathrm{t}+1}$ reduces to the construction of t -spread set. [3,,pp220]
$t$-spread set : Let $t$ be a positive integer. A set $\mathscr{C}$ of $(t+1)$ by $(t+1)$ matrices over $F$ is a $t$-spread set over $F$ if it satisfies
a) $|\mathscr{C}|=\mathrm{q}^{\mathrm{t}+1}, \mathscr{C}$ contains the zero and identity matrices.
b) For all $\mathrm{X}, \mathrm{Y} \in \mathscr{C}, \mathrm{X} \neq \mathrm{Y} \Rightarrow \operatorname{det}(\mathrm{X}-\mathrm{Y}) \neq 0$.

Here $\operatorname{det} \mathrm{A}$ denotes the determinant of the matrix A .
Through out this paper F, (abcd,efgh klmn,pqrs) and i.p denote the Galois Field GF(3) ,the $4 \times 4$ matrix
$\left(\begin{array}{llll}a & b & c & d \\ e & f & g & h \\ k & l & m & n \\ p & q & r & s\end{array}\right)$ and ideal point respectively.
For $\mathrm{M}, \mathrm{N} \in \mathrm{GL}(4,3), \mathrm{T}(\mathrm{M}, \mathrm{N})=\left\{\mathrm{A} \in \mathrm{GL}(4,3) \mid \mathrm{A}^{-1} \mathrm{MA}=\mathrm{N}\right\}, . \mathrm{Z}(\mathrm{M})=\mathrm{T}(\mathrm{M}, \mathrm{M})$.
Let $G$ denote the translation complement of the translation plane $\pi$; $\mathrm{G}_{0}\left(\mathrm{G}_{81}\right)$ denotes the collinetion subgroup of $G$ fixing the i.p 0 (81); $G_{0,81}$ denotes the (autotopism) collineation subgroup of $G$ fixing the i.ps

## DOI: 10.18535/ijsrm/v4i12.06

0,81 and $\mathrm{G}_{0,81,1}$ denotes the subgroup of G ( conjugation collineation group) fixing the i.ps $0,81,1 ;$ In general $\mathrm{G}_{\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}}$ denotes the collineation subgroup of G fixing the i.ps $\mathrm{i}, \mathrm{j}, \mathrm{k}, \mathrm{l}, \mathrm{m}$.

The translation plane $\pi$ under study is constructed through a 3 - spread set $\mathscr{C}$ over F . The spread set $\mathscr{C}$ is given by

$$
\mathscr{C}=\{0\} \cup \mathrm{A}_{0} \mathscr{G} \cup \mathrm{~A}_{1} \mathscr{G} \cup \mathrm{~A}_{2} \mathscr{G} \cup \mathrm{~A}_{3} \mathscr{G},
$$

where $\mathscr{G}=<\mathrm{X}, \mathrm{Y} / \mathrm{X}, \mathrm{Y} \in \mathrm{GL}(4,3), \mathrm{X}^{5}=\mathrm{I}, \mathrm{Y}^{2}=-\mathrm{I}, \mathrm{Y}^{-1} \mathrm{XY}=\mathrm{X}^{-1}>$ is a meta cyclic group of order 20 in GL $(4,3)$ where $\mathrm{X}=(2120,0212,2221,1022), \mathrm{Y}=(1100,1200,2012,1222)$
and

$$
\begin{aligned}
& \mathrm{A}_{0}=(1000,0100,0010,0001) \\
& \mathrm{A}_{1}=(0001,0011,0121,1001) \\
& \mathrm{A}_{2}=(0010,0001,1100,0110) \\
& \mathrm{A}_{3}=(0100,1100,1101,1112)
\end{aligned}
$$

Table 1

| I | $\mathrm{M}_{\mathrm{i}}$ | C.P of $\mathrm{M}_{\mathrm{i}}$ |  | I |  | $\mathrm{M}_{\mathrm{i}}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | $(0000,0000,0000,0000)$ |  |  | 41 | $(0010,0001,1100,0110)$ | $[0121]$ |
| 1 | $(1000,0100,0010,0001)$ | $[2021]$ | 42 | $(1112,2011,1001,1200)$ | $[2211]$ |  |
| 2 | $(1210,0121,1112,2011)$ | $[2121]$ |  | 43 | $(0102,2210,0221,1122)$ | $[0121]$ |
| 3 | $(2201,1020,0102,2210)$ | $[1111]$ | 44 | $(1110,0111,1111,1211)$ | $[2101]$ |  |
| 4 | $(1010,0101,1110,0111)$ | $[2121]$ | 45 | $(2110,0211,1121,1212)$ | $[1101]$ |  |
| 5 | $(2022,2102,2110,0211)$ | $[1111]$ | 46 | $(0020,0002,2200,0220)$ | $[0111]$ |  |
| 6 | $(2000,0200,0020,0002)$ | $[1011]$ | 47 | $(2221,1022,2002,2100)$ | $[1221]$ |  |
| 7 | $(2120,0212,2221,1022)$ | $[1111]$ | 48 | $(0201,1120,0112,2211)$ | $[0111]$ |  |
| 8 | $(1102,2010,0201,1120)$ | $[2121]$ | 49 | $(2220,0222,2222,2122)$ | $[1101]$ |  |
| 9 | $(2020,0202,2220,0222)$ | $[1111]$ | 50 | $(1220,0122,2212,2121)$ | $[2101]$ |  |
| 10 | $(1011,1201,1220,0122)$ | $[2121]$ | 51 | $(2012,1222,2000,0212)$ | $[0001]$ |  |
| 11 | $(1100,1200,2012,1222)$ | $[0201]$ | 52 | $(1221,1002,2120,2010)$ | $[0001]$ |  |
| 12 | $(1001,1122,1221,1002)$ | $[0201]$ | 53 | $(2021,2202,1102,0202)$ | $[0001]$ |  |
| 13 | $(0221,1211,2021,2202)$ | $[0201]$ | 54 | $(0022,0021,2020,1201)$ | $[0001]$ |  |
| 14 | $(1111,1212,0022,0021)$ | $[0201]$ | 55 | $(0210,1202,1011,0100)$ | $[0001]$ |  |
| 15 | $(1121,0220,0210,1202)$ | $[0201]$ | 56 | $(1021,2111,1000,0121)$ | $[0001]$ |  |
| 16 | $(2200,2100,1021,2111)$ | $[0201]$ | 57 | $(2112,2001,1210,1020)$ | $[0001]$ |  |
| 17 | $(2002,2211,2112,2001)$ | $[0201]$ | 58 | $(1012,1101,2201,0101)$ | $[0001]$ |  |
| 18 | $(0112,2122,1012,1101)$ | $[0201]$ | 59 | $(0011,0012,1010,2102)$ | $[0001]$ |  |
| 19 | $(2222,2121,0011,0012)$ | $[0201]$ | 60 | $(0120,2101,2022,0200)$ | $[0001]$ |  |
| 20 | $(2212,0110,0120,2101)$ | $[0201]$ | 61 | $(0100,1100,1101,1112)$ | $[0001]$ |  |
| 21 | $(0001,0011,0121,1001)$ | $[0001]$ | 62 | $(0121,1001,0012,0102)$ | $[0001]$ |  |
| 22 | $(2011,0120,1020,0221)$ | $[0001]$ | 63 | $(1020,0221,2101,1110)$ | $[0001]$ |  |
| 23 | $(2210,2012,0101,1111)$ | $[0001]$ | 64 | $(0101,1111,1222,2110)$ | $[0001]$ |  |
| 24 | $(0111,1221,2102,1121)$ | $[0001]$ | 65 | $(2102,1121,1002,0020)$ | $[0001]$ |  |
| 25 | $(0211,2021,0200,2200)$ | $[0001]$ | 66 | $(0200,2200,2202,2221)$ | $[0001]$ |  |
| 26 | $(0002,0022,0212,2002)$ | $[0001]$ | 67 | $(0212,2002,0021,0201)$ | $[0001]$ |  |
| 27 | $(1022,0210,2010,0112)$ | $[0001]$ | 68 | $(2010,0112,1202,2220)$ | $[0001]$ |  |
| 28 | $(1120,1021,0202,2222)$ | $[0001]$ | 69 | $(0202,2222,2111,1220)$ | $[0001]$ |  |
| 29 | $(0222,2112,1201,2212)$ | $[0001]$ | 70 | $(1201,2212,2001,0010)$ | $[0001]$ |  |


| 30 | $(0122,1012,0100,1100)$ | $[0001]$ | 71 | $(1200,2000,0222,0120)$ | $[0001]$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 31 | $(1222,0201,0110,2022)$ | $[0001]$ | 72 | $(1122,2120,0122,2012)$ | $[0001]$ |
| 32 | $(1002,2220,1200,2000)$ | $[0001]$ | 73 | $(1211,1102,0001,1221)$ | $[0001]$ |
| 33 | $(2202,1220,1122,2120)$ | $[0001]$ | 74 | $(1212,2020,2011,2021)$ | $[0001]$ |
| 34 | $(0021,0010,1211,1102)$ | $[0001]$ | 75 | $(0220,1011,2210,0022)$ | $[0001]$ |
| 35 | $(1202,1112,1212,2020)$ | $[0001]$ | 76 | $(2100,1000,0111,0210)$ | $[0001]$ |
| 36 | $(2111,0102,0220,1011)$ | $[0001]$ | 77 | $(2211,1210,0211,1021)$ | $[0001]$ |
| 37 | $(2001,1110,2100,1000)$ | $[0001]$ | 78 | $(2122,2201,0002,2112)$ | $[0001]$ |
| 38 | $(1101,2110,2211,1210)$ | $[0001]$ | 79 | $(2121,1010,1022,1012)$ | $[0001]$ |
| 39 | $(0012,0020,2122,2201)$ | $[0001]$ | 80 | $(0110,2022,1120,0011)$ | $[0001]$ |
| 40 | $(2101,2221,2121,1010)$ | $[0001]$ | 81 | ----- |  |

The translation plane $\pi$ under study is constructed through the 3 -spread set $\mathscr{C}$ over F by considering 4-dimensional subspaces $\mathrm{V}_{\mathrm{i}}, 0 \leq i \leq 81$ of $\mathrm{V}(8,3)$, the 8-dimensional vector space over F as follows:

Let $\mathrm{V}_{\mathrm{i}}=\left\{(\mathrm{x}, \mathrm{y}) / \mathrm{y}=\mathrm{x} \mathrm{M}_{\mathrm{i}}, \mathrm{x} \in \mathrm{F}^{4}\right\}, 0 \leq i \leq 80, \quad \mathrm{~V}_{81}=\left\{(0, \mathrm{y}) / \mathrm{y} \in \mathrm{F}^{4}\right\}$. The incidence structure whose points are vectors of $\mathrm{V}=\mathrm{F}^{8}$ and whose lines are $\mathrm{V}_{\mathrm{i}}, 0 \leq i \leq 81$ and their cosets in the additive group of V with inclusion as incidence relation is the translation plane $\pi$ associated with the 3 -spread set $\mathscr{C}$.

Left and Middle nuclei of the $t$-spread set: If $\mathscr{C}$ is a t-spread set then

$$
\left.\begin{array}{ll}
\mathrm{M}_{\lambda}=\{\mathrm{M} \in \mathscr{C} & \quad \mid \mathscr{C} \mathrm{M}=\mathscr{C}
\end{array}\right\}
$$

Left nucleus $\mathrm{M}_{\lambda}$ and middle nucleus $\mathrm{M}_{\mu}$ are multiplicative groups of $\mathrm{GL}(\mathrm{t}+1, \mathrm{q})$ and if $\mathrm{M} \in \mathscr{C}$ and $\mathrm{M}^{2} \notin \mathscr{C}$ Then $\mathrm{M} \notin \mathrm{M}_{\lambda} \cup \mathrm{M}_{\mu}$. It can be observed that the left and middle nuclei of the above 3-spread set $\mathscr{C}$ are as given below
Left Nucleus : $\mathrm{M}_{\lambda}=\mathscr{G} \cup \mathrm{A}_{1} \mathscr{G}=\left\langle\mathrm{M}_{3}, \mathrm{M}_{21} \mid \mathrm{M}_{3}{ }^{5}=\mathrm{I}, \mathrm{M}_{21}{ }^{8}=\mathrm{I}, \mathrm{M}_{21}{ }^{-1} \mathrm{M}_{3} \mathrm{M}_{21}=\mathrm{M}_{3}{ }^{3}\right\rangle$
Left nucleus is a meta cyclic group of order 40.
Middle nucleus $\mathrm{M}_{\mu}: \mathrm{M}_{\mu}=\mathscr{G} \cup \mathrm{A}_{3} \mathscr{G}=\left\langle\mathrm{M}_{3}, \mathrm{M}_{61} \mid \mathrm{M}_{3}{ }^{5}=\mathrm{I}, \mathrm{M}_{61}{ }^{8}=\mathrm{I}, \mathrm{M}_{61}{ }^{-1} \mathrm{M}_{3} \mathrm{M}_{61}=\mathrm{M}_{3}{ }^{3}\right\rangle$
Middle nucleus is also a meta cyclic group of order 40.

## V-W system associated with the spread set $\mathscr{C}$

Let $(\mathrm{Q},+, \cdot)$ be a system constructed from the 3 -spread set $\mathscr{C}$ where $\mathrm{Q}=\mathrm{F}^{4}$, the operation ' + ' is the ordinary vector sum. Let $\mathrm{e}=(1000)$. For each $\mathrm{y} \in \mathrm{Q}$ there is a unique matrix $\mathrm{M} \in \mathscr{C} \quad($ denoted by $\mathrm{M}(\mathrm{y}))$ such that
$y=e M$. For $x, y \in Q, y \neq 0$ define $y . x=x M(y)$ and $0 . x=0$. The system $(Q,+, \cdot)$ is a left $V-W$ system coordinatizing the translation plane $\pi$. Let $\mathrm{N}_{\lambda}, \mathrm{N}_{\mu}$ be the left and middle nuclei of the V-W system ( $\mathrm{Q},+, \cdot$ )

So $\mathrm{N}_{\lambda}=\langle(1210),(0001)\rangle$ and $\mathrm{N}_{\mu}=\langle(1210),(0100)\rangle . \mathrm{N}_{\lambda} \cap \mathrm{N}_{\mu}$ contains a unique cyclic subgroup generated by g of order 10 where $\mathrm{g}=(1210)$.

## V -W system is a $\lambda$-system:

The quadruples of $Q$ are indexed as follows $Q=\left\{x_{i} \mid x_{i}=e M_{i}, M_{i} \in \mathscr{C}, 0 \leq i \leq 80\right\} . x_{2}=(1210)=g$

We observe the following:

$$
\begin{align*}
& \Leftrightarrow \mathrm{g} \mathrm{~A}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2}{ }^{\mathrm{i}-1}=\mathrm{e} \mathrm{~A}_{j_{1}} \quad \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2}{ }^{\mathrm{i}-1} \mathrm{M}_{2} 3^{\lambda\left(X_{10 j+1)}\right.} \\
& \Leftrightarrow \mathrm{gA}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}}=\mathrm{e} \mathrm{~A}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2} 3^{\lambda\left(X_{10 j+1)}\right.} \\
& \Leftrightarrow \mathrm{g}=\mathrm{e}\left(\mathrm{~A}_{j_{1}}\left(\mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2}{ }^{3^{\lambda\left(X_{10 j+1)}\right.}} \mathrm{M}_{11}{ }^{-\mathrm{k}}\right) \mathrm{A}_{j_{1}}{ }^{-1}\right) \\
& \Leftrightarrow \lambda\left(X_{10 \mathrm{j}+1}\right)=0 \text { where } \mathrm{j}=0,4 \\
& =2 \quad \mathrm{j}=1,5 \\
& =1 \quad \mathrm{j}=2,6  \tag{I}\\
& =3 \quad j=3,7
\end{align*}
$$

II
For $0 \leq j \leq 7,1 \leq i \leq 10$ define $\quad \lambda\left(X_{10 j_{i}+}\right)=\lambda\left(X_{10 j+1}\right)$
Now we see $X_{10 \mathrm{j}+\mathrm{i}} \cdot \mathrm{g}=\mathrm{g} 3^{\lambda\left(X_{10 j+i)}\right.} \cdot X_{10 \mathrm{j}+\mathrm{i}} \quad \Leftrightarrow \mathrm{gM}\left(X_{10 \mathrm{j}+\mathrm{i}}\right)=X_{10 \mathrm{j}+\mathrm{i}} \mathrm{M}\left(\mathrm{g} 3^{\lambda\left(X_{10 j+1)}\right.}\right)$

$$
\begin{aligned}
& \Leftrightarrow \mathrm{g} \mathrm{~A}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2}^{\mathrm{i}-1}=\mathrm{e} \mathrm{~A}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2}{ }^{\mathrm{i}-1} \mathrm{M}_{2} 3^{\lambda\left(X_{10 j+1)}\right.} \\
& \Leftrightarrow{\mathrm{g} \mathrm{~A} j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}}=\mathrm{e} \mathrm{~A}_{j_{1}} \mathrm{M}_{11}{ }^{\mathrm{k}} \mathrm{M}_{2} 3^{\lambda\left(X_{10 j+1)}\right.} \\
& \Leftrightarrow X_{10 j+1} \cdot \mathrm{~g}=\mathrm{g} 3^{\lambda\left(X_{10 j+1)}\right.} \cdot X_{10 j+1}
\end{aligned}
$$

From the above it is clear that the mapping $\lambda: \mathrm{Q}^{*} \rightarrow \mathrm{Z}_{4}$ (integers modulo 4) defined in I and II satisfy the property $\mathrm{x} . \mathrm{g}=\mathrm{g}^{3^{\lambda(x)}} . \mathrm{x}$ for all $\mathrm{x} \in \mathrm{Q}^{*}$. [By theorem in 13 pp 541$] \mathrm{V}-\mathrm{W}$ system is a $\lambda$ - system.

## 3. Collineations of the translation plane $\pi$

Any non- singular linear transformation on $\mathrm{V}=\mathrm{F}^{8}$ induces a collineation of $\pi$ fixing the point corresponding to the zero vector if and only if the linear transformation permutes the subspaces $\mathrm{V}_{\mathrm{i}}, 0 \leq i \leq 81$ among themselves. Equivalently, a non singular linear transformation $\mathrm{T}=\left[\begin{array}{cc}B & C \\ D & E\end{array}\right]$, where $\mathrm{B}, \mathrm{C}, \mathrm{D}$ and E are 4 x 4 matrices over F , induces a collineation of $\pi$ fixing the point corresponding to the zero vector if and only if the following conditions (a) and (b) are satisfied.[17,Theorem 1]
(a) If D is non-singular ,then $\mathrm{D}^{-1} \mathrm{E} \in \mathscr{C}$, if D is singular then D is the zero matrix and E is nonsingular.
(b) For $\mathrm{M} \in \mathscr{C}$ if $(\mathrm{B}+\mathrm{MD})$ is non-singular ,then $(\mathrm{B}+\mathrm{MD})^{-1}(\mathrm{C}+\mathrm{ME}) \in \mathscr{C}$ if $(\mathrm{B}+\mathrm{MD})$ is singular then $(\mathrm{B}+\mathrm{MD})$ is the zero matrix and $(\mathrm{C}+\mathrm{ME})$ is non- singular.

The group of all collineations leaving the point corresponding to the zero vector of $\pi$ invariant is called the translation complement of $\pi$. Through out this paper, by a collineation we mean a collineation from the translation complement of $\pi$.

### 3.1 Collineations corresponding to the Left and middle nuclei

The mappings $\alpha=\left[\begin{array}{cc}I & 0 \\ 0 & M_{2}\end{array}\right], \beta=\left[\begin{array}{cc}I & 0 \\ 0 & M_{11}\end{array}\right], \lambda=\left[\begin{array}{cc}I & 0 \\ 0 & M_{21}\end{array}\right], \gamma_{1}=\left[\begin{array}{cc}M_{2}^{-1} & 0 \\ 0 & I\end{array}\right]$
$\gamma_{2}=\left[\begin{array}{cc}M_{61}^{-1} & 0 \\ 0 & I\end{array}\right]$ are all collineations of $\pi$ and the actions of the collineations $\alpha, \beta$ on the set of i.ps. of $\pi$ are furnished below:

$$
\begin{aligned}
\alpha: & (0)(81)(1,2, \ldots, 10)(11,12, \ldots, 20)(21,22, \ldots, 30)(31,32, \ldots, 40) \\
& (41,42, \ldots, 50)(51,52, \ldots, 60)(61,62, \ldots, 70)(71,72, \ldots, 80) \\
\beta: & (0)(81)(1,11,6,16)(2,20,7,15)(3,19,8,14)(4,18,9,13)(5,17,10,12) \\
& (21,31,26,36)(22,40,27,35)(23,39,28,34)(24,38,29,33)(25,37,30,32) \\
& (41,51,46,56)(42,60,47,55)((43,59,48,54)(44,58,49,53)(45,57,50,52) \\
& (61,71,66,76)(62,80,67,75)(63,79,68,74)(64,78,69,73)(65,77,70,72)
\end{aligned}
$$

Also $\quad \lambda^{-1} \alpha \lambda=\alpha^{3}, \quad \lambda^{-1} \beta \lambda=\beta \alpha^{8}, \quad \gamma_{i}^{-1} \alpha \gamma_{i}=\alpha, \quad \gamma_{i}^{-1} \beta \gamma_{i}=\beta, \quad i=1,2$.
The actions of the collineations $\lambda, \gamma_{1}, \gamma_{2}$ on the set of i.ps of $\pi$ are computed and furnished below.
$\lambda: \quad(0)(81)(1,21,12,32,6,26,17,37)(2,24,11,39,7,29,16,34)(3,27,20,36,8,22,15,31)$
$(4,30,19,33,9,25,14,38)(5,23,18,40,10,28,13,35)(22,60,40,47,27,55,35,42)$
$(23,51,31,48,28,56,36,43)(41,62,52,71,46,67,57,76)(42,65,51,78,47,70,56,73)$
$(43,68,60,75,48,63,55,80)(44,61,59,72,49,66,54,77)(45,64,58,79,50,69,53,74)$
$\gamma_{1}: \quad(0)(81)(1,2,3,4,5,6,7,8,9,10)(11,20,19,18,17,16,15,14,13,12)$
$(21,24,27,30,23,26,29,22,25,28)(31,38,35,32,39,36,33,40,37,34)$
$(41,42,43,44,45,46,47,48,49,50)(51,60,59,58,57,56,55,54,53,52)$
(61,64,67,70,63,66,69,62,65,68)(71,78,75,72,79,76,73,80,77,74)
$\gamma_{2}: \quad(0)(81)(1,61,11,71,6,66,16,76)(2,62,12,72,7,67,17,77)(3,63,13,73,8,68,18,78)$
$(4,64,14,74,9,69,19,79)(5,65,15,75,10,70,20,80)(21,59,39,46,26,54,34,41)$
(25,53,33,50, 30,58,38,45)

Let $\gamma_{3}=\gamma_{2}{ }^{2}$. Now $\gamma_{3}=\left[\begin{array}{cc}M_{11}^{-1} & 0 \\ 0 & I\end{array}\right]$ is a collineation of $\pi$ and its action on the set of i.ps of $\pi$ follows from the action of $\gamma_{2}$ and is given below:
$\gamma_{3}: \quad(0)(81)(1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,20)(5,15,10,20)(21,32,26,37)(22,33,27,38)$

$$
(23,34,28,39)(24,35,29,40)(25,36,30,31)(41,59,46,54)(42,60,47,55)(43,51,48,56)(44,52,49,57)
$$

$(45,53,50,58)(61,80,66,75)(62,71,67,76)(63,72,68,77)(64,73,69,78)(65,74,70,79)$
Homology groups; [ 9,pp 385]: From the left nucleus of the plane and the collineations $\alpha, \lambda$ it is clear that $<\alpha, \lambda>$ is the $((\infty),[0,0])$ - homology group $\mathrm{H}_{1}$ of $\pi$. From the middle nucleus and the collineations $\gamma_{1}, \gamma_{2}$ of $\pi$
$\left.<\gamma_{1}, \gamma_{2}\right\rangle$ is the ( (0), [0] )-homology group $\mathrm{H}_{2}$ of $\pi$. Both homology groups are meta cyclic groups of order 40.The collineation group $\left\langle\mathrm{H}_{1}, \mathrm{H}_{2}\right\rangle=\left\langle\alpha, \lambda, \gamma_{1}, \gamma_{2}\right\rangle$ divides the set of i.ps of $\pi$ into three orbits $\mathcal{O}_{\mathbf{i}}, \mathrm{i}=$ $1,2,3$ of lengths $1,1,80$ where $\mathscr{O}_{1}=\{0\}, Q_{2}=\{81\}, \mathcal{O}_{3}=\{i \mid 1 \leq i \leq 80\}$.

### 3.2 Conjugacy collineations of the plane

A mapping $\delta=\left[\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right]$, where $\mathrm{A} \in \mathrm{GL}(4,3)$ induces a conjugation collineation of $\pi$ if $\mathrm{A}^{-1} \mathscr{C} \mathrm{~A}=\mathscr{C}$. The set of all conjugation collineations of $\pi$ forms a group called the conjugation collineation group, and this group fixes the ideal points corresponding to $\mathrm{V}(0), \mathrm{V}(\infty)$, and $\mathrm{V}(\mathrm{I})$. Conjugacy collineations of the plane keeps the left and middle nuclei of $\mathscr{C}$ invariant. From Table 1 the matrices $M_{i}, i=3,5,7,9$ are the only matrices with C.P [1111] and the matrices $\mathrm{M}_{\mathrm{i}}, \mathrm{i}=41,43$ are the only matrices with C.P [0121]. So every collineation either fixes the i.p 41 or flips the i.ps 41,43 while keeping the set of i.ps $S=\{3,5,7.9\}$ invariant. In order to keep the set of i.ps of $S$ invariant under $\delta$ the matrix $A$ of $\delta$ belong to the following sets:

$$
\begin{array}{ll}
\mathrm{K}_{1}=\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{Z}\left(\mathrm{M}_{41}\right) & \mathrm{K}_{4}=\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{T}\left(\mathrm{M}_{41}, \mathrm{M}_{43}\right) \\
\mathrm{K}_{2}=\mathrm{T}\left(\mathrm{M}_{3}, \mathrm{M}_{9}\right) \cap \mathrm{Z}\left(\mathrm{M}_{41}\right) & \mathrm{K}_{5}=\mathrm{T}\left(\mathrm{M}_{3}, \mathrm{M}_{9}\right) \cap \mathrm{T}\left(\mathrm{M}_{41}, \mathrm{M}_{43}\right) \\
\mathrm{K}_{3}=\mathrm{T}\left(\mathrm{M}_{3}, \mathrm{M}_{7}\right) \cap \mathrm{Z}\left(\mathrm{M}_{41}\right) & \mathrm{K}_{6}=\mathrm{T}\left(\mathrm{M}_{3}, \mathrm{M}_{7}\right) \cap \mathrm{T}\left(\mathrm{M}_{41}, \mathrm{M}_{43}\right)
\end{array}
$$

The sets $\mathrm{K}_{2}, \mathrm{~K}_{3}, \mathrm{~K}_{4}, \mathrm{~K}_{6}$ are empty. $\mathrm{K}_{1}=\mathrm{Z}\left(\mathrm{M}_{3}\right), \mathrm{K}_{5}=\mathrm{T}\left(\mathrm{M}_{3}, \mathrm{M}_{9}\right)$. No conjugacy collineation maps the i.p 3 onto the i.p 7 and every conjugation collineation either fixes the i.ps 3 and 41 or flips the i.ps 3, 9 and 41, 43.

Also since $\mathrm{M}_{\lambda} \cap \mathrm{M}_{\mu}=\mathscr{G}$. each matrix of $\mathscr{G}$ induces a conjugacy collineation Let $\delta_{1}=\gamma_{1}{ }^{-1} \alpha, \delta_{2}=\gamma_{3}{ }^{-1} \beta$. The mappings $\delta_{1}$ and $\delta_{2}$ are collineations of $\pi$ since they are product of collineations. $<\delta_{1}, \delta_{2}>$ is a subgroup of $\mathrm{G}_{0,81,1}$ and is isomorphic to $\mathscr{G}$
The actions of the conjugation collineations $\delta_{1}, \delta_{2}$ on the set of i.ps. of $\pi$ can be computed from the actions of $\alpha, \beta, \gamma_{1}, \gamma_{3}$ and are furnished below:

$$
\begin{aligned}
\delta_{1}: \quad & (0)(81)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11,13,15,17,19)(12,14,16,18,20)(21,29,27,25,23) \\
& (22,30,28,26,24)(31,35,39,33,37)(32,36,40,34,38)(41)(42)(43)(44)(45)(46)(47)(48)(49)(50) \\
& (51,53,55,57,59)(52,54,56,58,60)(61,69,67,65,63)(62,70,68,66,64)(71,75,79,73,77)
\end{aligned}
$$

(72,76,80,74,78)
$\delta_{2}: \quad(0)(81)(1)(2,10)(3,9)(4,8)(5,7)(6)(11)(12,20)(13,19)(14,18)(15,17)(16)$

$$
\begin{aligned}
& (21,23)(22)(24,30)(25,29)(26,28)(27)(31,39)(32,38)(33,37)(34,36)(35)(40) \\
& (41,43)(42)(44,50)(45,49)(46,48)(47)(51,59)(52,58)(53,57)(54,56)(55)(60) \\
& (61)(62,70)(63,69)(64,68)(65,67)(66)(71)(72,80)(73,79)(74,78)(75,77)(76)
\end{aligned}
$$

From the actions of the collineations $\delta_{1}$ and $\delta_{2}$ on the set of i.ps. of $\pi$ it is clear that the collineation group $\left\langle\delta_{1}, \delta_{2}>\right.$ is transitive on the set of i.ps. $\{3,9\},\{11,13,15,17,19\}$ and $\{12,14,16,18,20\}$ separately. If $\delta_{3}=\left[\begin{array}{ll}A & 0 \\ 0 & A\end{array}\right]$ is a mapping fixing the i.ps. 3 and 11 then the matrix A of $\delta_{3}$ belongs $\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{Z}\left(\mathrm{M}_{11}\right)$, where

$$
\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{Z}\left(\mathrm{M}_{11}\right)=\left\{\left.A(a, d)=\left(\begin{array}{cccc}
a & 2 d & 2 d & d \\
d & a+d & 2 d & 2 d \\
2 d & 0 & a+d & 2 d \\
2 d & d & 0 & a+d
\end{array}\right) \right\rvert\,(a, d) \neq(0,0), a, d \in F\right\}
$$

If $\mathrm{A}=\mathrm{A}(1,1)^{2}=(0112,2211,1021,1202)$ then $\mathrm{A}^{-1} \mathrm{M}_{21} \mathrm{~A}=\mathrm{M}_{26}, \mathrm{~A}^{-1} \mathrm{M}_{41} \mathrm{~A}=\mathrm{M}_{41}, \mathrm{~A}^{-1} \mathrm{M}_{61} \mathrm{~A}=\mathrm{M}_{66}$
If A of $\delta$ is such that $\mathrm{A}^{-1} \mathscr{G} \mathrm{~A}=\mathscr{G}$ then $\delta$ induces a collineation of $\pi$ fixing the i.ps $0,81,1$ if and only if $\mathrm{A}^{-1} \mathrm{M}_{20 i+1} \mathrm{~A}, 1 \leq i \leq 3$ belong to distinct left cosets of $\mathscr{G}$. Hence $\mathrm{A}=\mathrm{A}(1,1)^{2}$ induces a conjugation collineation.

Also all even powers of $\mathrm{A}(1,1)$ induce conjugation collineations and the odd powers of $\mathrm{A}(1,1)$ do not induce conjugation collineations. So $\mathrm{G}_{0,81,1,3,11}=<\delta_{3}>$ where $\delta_{3}=\left[\begin{array}{cc}A & 0 \\ 0 & A\end{array}\right]$ and $\mathrm{A}=\mathrm{A}(1,1)^{2} . \quad \delta_{3}$ is of order 4.

The action of the collineation $\delta_{3}$ on the set of i.ps. of $\pi$ is computed and furnished below: $\delta_{3}:(0)(81)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21,26)$ $(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41)(42)(43)(44)(45)(46)$ (47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61,66)(62,67)(63,68)(64,69)(71,76) $(73,78)(74,79)(75,80)$.

If $\delta_{4}=\left(\begin{array}{ll}A & 0 \\ 0 & A\end{array}\right)$ is a mapping fixing the i.p. 3 and mapping the i.p. 11 onto the i.p. 12 then the matrix A of $\delta_{4}$ belongs to
$\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{T}\left(\mathrm{M}_{11}, \mathrm{M}_{12}\right)=\left\{\left.A(c, d)=\left(\begin{array}{cccc}2 c+2 d & 2 c & c & d \\ d & 2 c & 2 c & c \\ c & c+d & 2 c & 2 c \\ 2 c & 0 & c+d & 2 c\end{array}\right) \right\rvert\, c, d \in F,(c, d) \neq(0,0)\right\}$

It may be seen that no matrix of this set keeps $\mathscr{C}$ invariant under conjugation. From this no matrix of this set yields a conjugation collineation and thus no conjugation collineation of $\pi$ which fixes the i.p 3 maps the i.p 11 onto the i.p 12.

$$
\begin{gathered}
\mathrm{G}_{0,81,1,3}=\mathrm{G}_{0,81,1,3,11} \cup\left\{\cup_{i=1}^{5} \mathrm{G}_{0,81,1,3,11} \delta_{1}{ }^{i}\right\}=\left\langle\delta_{1}, \delta_{3}\right\rangle \\
\left|\mathrm{G}_{0,81,1,3}\right|=5\left|\mathrm{G}_{0,81,1,3,11}\right|=5 \times 4=20
\end{gathered}
$$

If $\delta_{5}=\left(\begin{array}{ll}A & 0 \\ 0 & A\end{array}\right)$ is a mapping flipping the i.ps 3,9 and mapping the i.p 11 onto the i.p 12 then the matrix A of $\delta_{5}$
belongs to $T\left(M_{3}, M_{9}\right) \cap T\left(M_{11}, M_{12}\right)$. Analysing as in the earlier case no matrix of this set yields a conjugation collineation. From this we conclude that no conjugation collineation which flips the i.ps 3 and 9 maps the i.p 11 onto the i.p 12 .Hence the collineation group $G_{0,81,1}$ is transitive on the set of i.ps $\{3,9\}$ and $\{11,13,15,17,19\}$ separately. Now

$$
\mathrm{G}_{0,81,1}=\mathrm{G}_{0,81,1,3} \cup \mathrm{G}_{0,81,1,3} \delta_{2}=<\delta_{1}, \delta_{2}, \delta_{3}>
$$

Since $G_{0,81,1}$ is transitive on $\{3,9\}$

$$
\left|\mathrm{G}_{0,81,1,1}\right|=2\left|\mathrm{G}_{0,81,1,3}\right|=2 \times 20=40
$$

In the above discussion we have seen that the collineation group $\mathrm{G}_{0,81,1,3,11}$ flips the i.ps 21 and 26 . If $\delta_{6}=\left(\begin{array}{ll}A & 0 \\ 0 & A\end{array}\right)$ is a mapping that fixes the i.ps $0,81,1,3,11$ and 21 then the matrix A of $\delta_{6}$ belongs to
$\mathrm{Z}\left(\mathrm{M}_{3}\right) \cap \mathrm{Z}\left(\mathrm{M}_{11}\right) \cap \mathrm{Z}\left(\mathrm{M}_{21}\right)$. By a straight forward computation we see that $\mathrm{A}= \pm \mathrm{I}$. The mapping $\delta_{6}$ induces a scalar collineation which fixes all the i.ps and

$$
\mathrm{G}_{0,81,1,3,11,21}=\left\langle\delta_{6}\right\rangle \cong \mathrm{F}^{*}
$$

Thus $\mathrm{G}_{0,81,1,3,11,21}$ is the $((0,0),[\infty])$ - homology group $\mathrm{H}_{3}$ of $\pi$ and hence gives the kernel of $\pi$. Thus the kernel K of Q is isomorphic to F .Hence the kernel of $\pi$ is trivial.

The collineation group $<\alpha, \lambda, \gamma_{1}, \gamma_{2}>$ fixes the i.ps 0 and 81 and is transitive on $\mathcal{O}_{3}$.

$$
\mathrm{G}_{0,81}=\left\{\bigcup_{i=1}^{20} G_{0,811,1} \xi_{i}\right\} \cup\left\{\bigcup_{i=1}^{20} G_{0,81,1} \lambda \xi_{i}\right\} \cup\left\{\bigcup_{i=1}^{20} G_{0,81,1} \lambda \gamma_{2}^{-1} \xi_{i}\right\} \cup\left\{\bigcup_{i=1}^{20} G_{0,81,1} \gamma_{2} \xi_{i}\right\} \text { where } \xi_{i} \text { is a }
$$

collineation from the collineation group $<\alpha, \beta>$ mapping the i.p 1 onto the i.p i, $1 \leq i \leq 20$ while fixing the i.ps 0 and 81 .

$$
\left.\left.\mathrm{G}_{0,81}=<\delta_{1}, \delta_{2}, \alpha, \beta, \lambda, \gamma_{2}>=<\alpha, \lambda, \gamma_{2} \|, \gamma_{1}>\text { since } \beta=\lambda^{2} \alpha^{-1} \text { and }<\delta_{1}, \delta_{2}\right\rangle \subset<\alpha, \lambda, \gamma_{1}, \gamma_{2}\right\rangle
$$

$$
\left|\mathrm{G}_{0,81}\right|=80\left|\mathrm{G}_{0,81,1}\right|=80 \times 40=3200
$$

### 3.3 Translation complement of $\pi$

Let $\theta=\left(\begin{array}{cc}0 & A \\ A & 0\end{array}\right)$ where $\mathrm{A}=(1000,0001,0011,0121)$. It may be seen that $\theta: M \rightarrow A^{-1} M^{-1} A, \mathrm{M} \in \mathscr{C}$ and $\mathrm{V}_{0} \theta=\mathrm{V}_{81}, \mathrm{~V}_{81} \theta=\mathrm{V}_{0}$. Further
$\theta: M_{2} \rightarrow M_{2}^{7}, M_{11} \rightarrow M_{17}, \mathrm{~A}_{1}=\mathrm{M}_{21} \rightarrow \mathrm{M}_{29}, \quad \mathrm{~A}_{2}=\mathrm{M}_{41} \rightarrow \mathrm{M}_{50}, \quad \mathrm{~A}_{3}=\mathrm{M}_{61} \rightarrow \mathrm{M}_{37}$
For $0 \leq j \leq 7,1 \leq i \leq 10$ we have

$$
\begin{aligned}
\theta: \mathrm{M}_{10 \mathrm{j}+\mathrm{i}} & \rightarrow \mathrm{~A}^{-1} \mathrm{M}_{2}{ }^{1-\mathrm{i}} \mathrm{M}_{11}{ }^{-\mathrm{k}} A_{j_{1}}^{-1} \mathrm{~A} \text { where } \mathrm{j}_{1}=\left[\frac{j}{2}\right], \mathrm{k}=\mathrm{j}-2 \mathrm{j}_{1} \\
& =\left(\mathrm{A}^{-1} \mathrm{M}_{2}{ }^{1-\mathrm{i}} \mathrm{~A}\right)\left(\mathrm{A}^{-1} \mathrm{M}_{11}{ }^{-\mathrm{k}} \mathrm{~A}\right)\left(\mathrm{A}^{-1} A_{j_{1}}^{-1} \mathrm{~A}\right) \\
& =M_{2}^{7(i-1)} M_{17}^{k}\left(\mathrm{~A}^{-1} A_{j_{1}}^{-1} \mathrm{~A}\right)
\end{aligned}
$$

For various values of $\mathfrak{j} ; \mathrm{j}_{1}$ takes the values $0,1,2,3$. When $\mathrm{j}=0$ or 1 then $\mathrm{j}_{1}=0$ and $\theta: \mathrm{M}_{10 \mathrm{j}+\mathrm{i}} \rightarrow M_{2}^{7(i-1)} M_{17}^{k} \in \mathscr{C}$. When $\mathrm{j}=2$ or 3 then $\mathrm{j}_{1}=1$ and $\theta: \mathrm{M}_{10 \mathrm{j}+\mathrm{i}} \rightarrow M_{2}^{7(i-1)} M_{17}^{k} M_{79} \in \mathscr{C}$ since $\left\langle\mathrm{M}_{2}, \mathrm{M}_{11}\right\rangle \subset M_{\mu}$. When $\mathrm{j}=4$ or $5, \theta: \mathrm{M}_{10 \mathrm{j}+\mathrm{i}} \rightarrow M_{2}^{7(i-1)} M_{17}^{k} M_{50} \in \mathscr{C}$ since $\mathscr{G} \subset M_{\mu}$. Also when $\mathrm{j}=6$ or $7, \theta$ sends $\mathrm{M}_{10 \mathrm{j}+\mathrm{i}}$ onto $M_{2}^{7(i-1)} M_{17}^{k} M_{37} \in \mathscr{C}$ as $\mathrm{M}_{2}, \mathrm{M}_{11} \in M_{\mu}$. This shows that $\theta$ permutes the non zero matrices of $\mathscr{C}$ among themselves. From this it follows that $\theta$ is a collineation of $\pi$ flipping the i.ps 0,81 and fixing the i,p. 1 .

It may be seen that $\mathrm{V}_{0} \theta=\mathrm{V}_{81}, \mathrm{~V}_{81} \theta=\mathrm{V}_{0}, \mathrm{~V}_{1} \theta=\mathrm{V}_{1}, \mathrm{~V}_{21} \theta=\mathrm{V}_{79}, \mathrm{~V}_{41} \theta=\mathrm{V}_{50}, \mathrm{~V}_{61} \theta=\mathrm{V}_{37}$ and $\theta^{-1} \alpha \theta=\gamma_{1}^{7}, \theta^{-1} \beta \theta=\gamma_{2}^{-1} \gamma_{1}^{-1}$. From these relations we get the following:

$$
\begin{array}{ll}
\mathrm{V}_{1+\mathrm{i}} \theta=V_{1+k_{1}} & \text { where } k_{1} \equiv 7 i(\bmod 10) \\
\mathrm{V}_{11+\mathrm{i}} \theta=V_{11+k_{2}} & \text { where } k_{2} \equiv 3 i+6(\bmod 10) \\
\mathrm{V}_{21+\mathrm{i}} \theta=V_{71+k_{3}} & \text { where } k_{3} \equiv 9 i+8(\bmod 10) \\
\mathrm{V}_{31+\mathrm{i}} \theta=V_{61+k_{4}} & \text { where } k_{4} \equiv i+5(\bmod 10) \\
\mathrm{V}_{41+\mathrm{i}} \theta=V_{41+k_{5}} & \text { where } k_{5} \equiv 7 i+9(\bmod 10) \\
\mathrm{V}_{51+\mathrm{i}} \theta=V_{51+k_{6}} & \text { where } k_{6} \equiv 3 i+3(\bmod 10) \\
\mathrm{V}_{61+\mathrm{i}} \theta=V_{31+k_{7}} & \text { where } k_{7} \equiv 9 i+6(\bmod 10) \\
\mathrm{V}_{71+\mathrm{i}} \theta=V_{21+k_{4}} &
\end{array}
$$

The action of the collineation $\theta$ on the set of i.ps. of $\pi$ is now given by
$\theta:(0,81)(1)(2,8,10,4)(3,5,9,7)(11,17,15,19)(12,20,14,16)(13)(18)(21,79,24,76)(22,78,23,77)$
$(25,75,30,80)(26,74,29,71)(27,73,28,72)(31,66,32,67)(35,68,40,65)(34,69,39,64)$
$(35,70,38,63)(36,61,37,62)(41,50,43,44)(42,47)(45,48,49,46)(51,54,53,60)(52,57)(55,56,59,58)$
It may be noted that the collineation group $\left\langle\mathrm{G}_{0,81}, \theta>\right.$ divides the set of i.ps. into two orbits $\mathscr{O}_{1}=\{0,81\}$ and
$\sigma_{2}=\{\mathrm{i} \mid 1 \leq i \leq 80\}$. Further $\mathrm{G}_{0,81} \theta$ gives the set of all collineations of $\pi$ that flips the i.ps. 0 and 81 .

### 3.4 Non existence of certain collineations

Lemma 1. (a) No collineation of $\pi$ maps the i.p. 1 onto the i.p. $81(0)$ and the i.p. $81(0)$ onto the i.p. $0(81)$.
(b) No collineation of $\pi$ maps the i.p. k onto the i.p. $81(0)$ and the i.p. $81(0)$ onto the i.p. $0(81)$.
(c) Every collineation that fixes the i.p. $0(81)$ also fixes the i.p. $81(0)$ i.e., $G_{0}=G_{81}=G_{0,81}$.

Proof. If $\pi$ has a collineation which maps the i.p. 1 onto the i.p. 81 and the i.p. 81 onto the i.p. 0 then by a Lemma [16, chapter 3] $\mathrm{M}+\mathrm{M}_{1} \in \mathscr{C}$ for all $\mathrm{M} \in \mathscr{C}$. This condition does not hold since
$\mathrm{M}_{21}+\mathrm{M}_{1}=(1001,0111,0101,1002) \notin \mathscr{C}$. This shows that no collineation of $\pi$ maps the i.p. 1 onto the i.p. 81 and the i.p. 81 onto the i.p. 0.

If $\mu$ is a collineation with the following action

$$
\mu:(1,0.81, \ldots, \ldots, \ldots)
$$

Then $\theta^{-1} \mu \theta$ maps the i.p. 1 onto the i.p. 81 and the i.p. 81 onto the i.p. $0-$ a contradiction to the above. This proves the first part of the lemma.

Let $\mu_{1}\left(\mu_{2}\right)$ be a collineation mapping the i.p. k onto the i.p. $81(0)$ and the i.p. $81(0)$ onto the i.p. $0(81)$. Since $\mathrm{G}_{0,81}$ fixes the i.ps. 0 and 81 and is transitive on the remaining i.ps., there exists a collineation $\tau \in \mathrm{G}_{0,81}$ which maps the i.p. 1 onto the i.p. k. Then $\tau \mu_{1} \tau^{-1}\left(\tau \mu_{2} \tau^{-1}\right)$ maps the i.p. 1 onto the i.p. $81(0)$ and the i.p. $81(0)$ onto the i.p. $0(81)$ - a contradiction to the first part of the lemma. We have already seen that $\pi$ is a $\lambda-$ plane and Q is a $\lambda$ - system with proper kern. By a result of Foulser [6.pp.390] No collineation of $\pi$ fixes the i.p. 0 (81) and moves the i.p. $81(0)$ i.e., every collineation of $\pi$ that fixes the i.p. 0 also fixes the i.p. 81 .

Therefore $\mathrm{G}_{0}=\mathrm{G}_{81}=\mathrm{G}_{0,81}$. This proves the last part of the lemma.
Lemma 2 Every Collineation of $\pi$ either fixes both the i.ps. 0 and 81 or flips them.
Proof. In view of the above lemma no collineation of $\pi$ maps the i.p. k onto the i.p. $0(81)$ via the i.p. $81(0)$, $\mathrm{k} \neq 0(\mathrm{k} \neq 81)$, every collineation of $\pi$ that fixes the i.p. 81 also fixes the i.p. 0 and vice versa.

Assume that $\xi$ is a collineation of $\pi$ mapping the i.ps. 0 and 81 onto any two i.ps. other than 0 and 81 . Using the transitivity of $G_{0,81}$ on the set of i.ps. other than the i.ps. 0 and 81 we can take without loss of generality that $\boldsymbol{\xi}$ maps the i.p. 0 onto the i.p. 1. This plane $\pi$ has a collineation $\theta$ which fixes the i.p. 1 and moves the remaining i.ps. except $6,13,18$.

Now in view of lemma [16,chapter 3] no collineation of $\pi$ moves the i.p. 0 onto the i.p. 1 and the i.p. 81 onto the i.p. k, where $\mathrm{k} \notin\{6,13,18\}$. But $\pi$ has a collineation $\delta_{2}$ which fixes the i.p. 1 moves both the i.ps. 13 and 18 and again by the same lemma [16,chapter 3] we get that no collineation of $\pi$ maps the i.p. 0 onto

## DOI: 10.18535/ijsrm/v4i12.06

the i.p. 1 and the i.p. 81 onto either the i.p. 13 or the i.p.18.Thus the collineation $\xi$ must map the i.p. 81 onto the i.p. 6 while mapping the i.p. 0 onto the i.p. 1. By a result of Maduram [12,pp 487]. the spread sets $\mathscr{C}$ and $\mathscr{C}_{1,6, \mathrm{k}}$ must be conjugate where $\mathrm{k} \neq 1,6$ and

$$
\mathscr{C}_{1,6, \mathrm{k}}=\left[\mathrm{N}_{\mathrm{i}}=\left\{\left(\mathrm{M}_{\mathrm{i}}-\mathrm{M}_{6}\right)^{-1}-\left(\mathrm{M}_{1}-\mathrm{M}_{6}\right)^{-1}\right\}-\left\{\left(\mathrm{M}_{\mathrm{k}}-\mathrm{M}_{6}\right)^{-1}-\left(\mathrm{M}_{1}-\mathrm{M}_{6}\right)^{-1}\right\} \mid \mathrm{M}_{\mathrm{i}} \in \mathscr{C}\right]
$$

i.e., $\mathscr{C}_{1,6, k}$ is a 3 -spread set of $\pi$ with $\mathrm{V}_{1}, \mathrm{~V}_{6}$ and $\mathrm{V}_{\mathrm{k}}$ as the fundamental subspaces $(\mathbf{y}=\mathbf{0}, \mathbf{x}=\mathbf{0}, \mathbf{y}=\mathbf{x})$.It may be observed that every matrix of $\mathscr{C}$ is of det 1 and the spread set $\mathscr{C}_{1,6}$ contains matrices of determinants 1 and 2 . The matrices $\mathrm{N}_{0}, \mathrm{~N}_{1} \in \mathscr{C}_{1,6,0}$ are of det 1 and $\mathrm{N}_{4}$ is of det 2 (table .2). It now follows that the spread sets $\mathscr{C}_{1,6, \mathrm{k}}$ for any $\mathrm{k} \neq 1,6$ contains matrices of det 1 and det 2 . Thus the spread sets $\mathscr{C}$ and $\mathscr{C}_{1,6, \mathrm{k}}$ are not conjugate for any k - a contradiction. From this it follows that no collineation of $\pi$ maps the i.p. 0 onto the i.p. 1 and the i.p. 81 onto the i.p. 6 . Thus no collineation of $\pi$ moves both the i.ps. 0 and 81 outside the orbit $\{0,81\}$. Therefore every collineation of $\pi$ either fixes both the i.ps. 0 and 81 or flips them.

Table 2

| i | $\mathbf{M}_{\mathrm{i}}-\mathrm{M}_{6}$ | $\left(M_{i}-M_{6}\right)^{-1}$ | $X_{i}=\left(M_{i}-M_{6}\right)^{-1}-\left(M_{1}-M_{6}\right)^{-1}$ | $\mathbf{N}_{\mathrm{i}}=\mathbf{X}_{\mathbf{i}} \mathbf{X}_{\mathbf{i}}{ }^{-1}$ | Det $\mathrm{N}_{\mathrm{i}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | (1000,0100,0010,0001) | (1000,0100,0010,0001) | (2000,0200,0020,0002) | (1000,0100,0010,0001) | 1 |
| 1 | (2000,0200,0020,0002) | (2000,0200,0020,0002) | 0 | 0 | 0 |
| 2 | $(2210,0221,1122,2012)$ | (2211,1021,1202,2020) | (0211,1121,1212,2021) | $(0122,2212,2121,1012)$ | 1 |
| 3 | (0201,1120,0112,2211) | (2012,2101,1010,0101) | (0012,2201,1020,0102) | (0021,1102,2010,0201) | 2 |
| 4 | (2010,0201,1120,0112) | (2101,1010,0101,1110) | (0101,1110,0111,1111) | (0202,2220,0222,2222) | 2 |
| 5 | (0022,2202,2120,0212 | $(2110,0211,1121,1212)$ | (0110,0011,1101,1210) | (0220,0022,2202,2120) | 1 |
| 6 | (0000,0000,0000,0000) | $\infty$ | $\infty$ | $\infty$ | -- |

Theorem: The translation complement G of the translation plane $\pi$ is given by $\mathrm{G}=\left\langle\alpha, \lambda, \gamma_{1}, \gamma_{2}, \theta>\right.$. It is of order 6400 and divides the set of i.ps. into two orbits of lengths 2 and 80 where the small orbit consists of the i.ps. 0 and 81.

Proof: The collineation group $\left\langle\alpha, \lambda, \gamma_{1}, \gamma_{2}, \theta>\right.$ is a subgroup of G. If $\xi$ is any collineation of $\pi$ then by the above lemma $2, \xi$ either belongs to $\mathrm{G}_{0,81}$ or $\mathrm{G}_{0,81} \theta$.

Thus $\xi \in\left\langle\mathrm{G}_{0,81}, \theta\right\rangle=\left\langle\alpha, \lambda, \gamma_{1}, \gamma_{2}, \theta\right\rangle$. Thus $\mathrm{G}=\left\langle\alpha, \lambda, \gamma_{1}, \gamma_{2}, \theta\right\rangle$ and G divides the set of i.ps. of $\pi$ into two orbits of lengths 2 and 80 , where the smaller orbit consists of the i.ps. 0 and 81.Since G flips 0 and 81

$$
|\mathrm{G}|=2\left|\mathrm{G}_{0}\right|=2\left|\mathrm{G}_{0,81}\right|=2 \times 3200=6400 .
$$

Hence the theorem.

## REFERENCES

[1] R.H .Bruck and R.C .Bose., The constructionof translation planes from projective spaces, J. Algebra 1(1964),85-102.
[2] R. H. Bruck and R. C. Bose, Linear representation of projective planes in projective spaces, J. Algebra 4,(1966), 117-172
[3] P. Dembowski ,Finite Geometries, Springer-verlag, New York (1968)
[4] U.Dempowolff and A.Reifart, The classification of translation planes of order 16,Geom.Dedicata 15 (1983), 137-153
[5] K.V.Durgaprasad, Construction of translation planes and determination of their translation complements, Ph.D Thesis,Osmania University ( 1987)
[6] D.A.Foulser,A generalization of Andre systems ,Math.Z.100(196Camb7),380-395
[7] D.A.Foulser,Some translation planes of order 81,Finite Geometries and designs.Proc.Conf.chelwood Gate 1980. London Math.Soc.Lecture notes s.49,Cambridge univ.press, $\operatorname{Camb}(1981)$, 116-118
[8] Hall M. Jr, The theory of groups ,Macmillan,New York,(1959)
[9] D.R.Hughes and F.C Piper, Projective planes, Springer -Verlag, New York, (1973)
[10] V.Jha and N.L.Johnson, On collineation groups ooofff translation planes of order $\mathrm{q}^{4}$, Inter.Nat.J.Math.Sci. 9 (1986) ,617-620
[11] H.Luneberg,Translation planes,Springer-Verlag,New York, (1980)
[12] D.M.Maduram. Matrix representation of translation planes,Geom.Dedicata.4(1975), 485-492
[13] M.L.NarayanaRao, Characterisation of Foulsers $\lambda$ systems,Proc. Amer.Math.Soc.Vol 24,(1970),538544
[14] M.L.Narayana Rao and E.H.Davis,. Construction of translation planes from t-spread sets,J.Comb.Theory ser A. 14 (1973), 201-208
[15] T.G.Ostrom, Finite translation planes,Lecture notes in Maths 158,Springer-Verlag, Berlin and New York (1970).
[16] K.Satyanarayana, On some translation planes of square and cube orders and their translation complements Ph.D Thesis, Osmania University (1982)
[17] F.A.Sherk,Indicator sets in affine plane of any dimension,Canad.J.Math.31(1979), 211-224
[18] Vito Abatangelo, A translation plane of order 81 and its full collineation group, Bull.Aust.Math.Soc.29(1984),19-34

