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Summary: A translation plane of order 3
4
 is constructed. It is shown that the plane is a generalized Andre 

plane and computed the translation complement of the plane .It is found to be of order 6400. 

1. Introduction 

Rao and Davis have given [14 ] the construction of translation planes through t-spread sets. It may be 

recalled that Bruck and Bose have contributed to the theory of t-spread sets over finite fields for the 

construction of non Desarguesian translation planes through their papers [ 1] , [2 ]  . In this paper we have 

constructed a translation plane π of order 3
4
 using  3- spread sets . This plane is shown to be a generalized 

Andre plane applying the technique given by D.A.Foulser [6 ]. By making use of the properties of the 

collineation groups of the plane π  the translation complement of the plane π is computed and found to be of 

order 6400. 

2. Description of the plane π and identifying the plane as a generalized Andre system 

It is well known that a translation plane π of finite order can be coordinatized by a  V-W system. Conversely 

given a V-W system (Q,+, ∙) a translation  plane π(Q) can be associated with Q [8,pp 362]. A V-W system 

can be constructed from a t-spread set.[1,pp95]. Thus the construction of translation plane of order q
t+1

 

reduces to the construction of t-spread set. [3,,pp220]  

t-spread set : Let t be a positive integer . A set  C    of (t+1) by (t+1) matrices over F is a t-spread set over F 

if it satisfies  

a) │ C  │   =  q
t+1

  ,    C     contains the zero and identity matrices. 

b) For all X, Y   C    ,   X  ≠ Y  => det (X-Y)  ≠ 0. 

Here det A denotes the determinant of the matrix A.    

Through out this paper F, ( abcd,efgh klmn,pqrs) and i.p denote the Galois Field GF(3) ,the 4x4 matrix 





















srqp

nmlk

hgfe

dcba

 and ideal point respectively.  

For M,N   GL(4,3), T( M, N ) = {A GL(4,3) │ A
-1

MA=N}  , .Z(M) = T(M,M). 

Let G denote the translation complement of the translation plane π; G0 (G81) denotes the collinetion 

subgroup of G fixing the i.p 0 (81);  G0,81 denotes the (autotopism) collineation subgroup of G fixing the i.ps 
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0,81 and G0,81,1 denotes the subgroup of G ( conjugation collineation group) fixing the i.ps 0,81,1;In general 

Gi,j,k,l,m denotes the collineation subgroup of G fixing the i.ps i, j,k ,l ,m. 

 

The translation plane π under study is constructed through a 3- spread set  C     over F .The spread set C    is 

given by 

C   = {0}  A0 G       A1 G      A2G      A3G   e 

where   G    = < X,Y   X,Y  GL(4,3) , X
5
 = I, Y

2
 =  I ,Y

-1
XY = X

-1
 >  is a meta cyclic group of order 20 in  

GL(4,3) where X = ( 2120,0212,2221,1022)  , Y = ( 1100,1200,2012,1222) 

 and      A0 = ( 1000,0100,0010,0001) 

     A1 = (  0001,0011,0121,1001) 

     A2 = ( 0010,0001,1100,0110) 

     A3 =  (0100,1100,1101,1112) 

 Table 1 

I Mi C.P of Mi  I Mi C.P of Mi 

0 (0000,0000,0000,0000)   41 (0010,0001,1100,0110) [0121] 

1 (1000,0100,0010,0001) [2021]  42 (1112,2011,1001,1200) [2211] 

2 (1210,0121,1112,2011) [2121]  43 (0102,2210,0221,1122) [0121] 

3 (2201,1020,0102,2210) [1111]  44 (1110,0111,1111,1211) [2101] 

4 (1010,0101,1110,0111) [2121]  45 (2110,0211,1121,1212) [1101] 

5 (2022,2102,2110,0211) [1111]  46 (0020,0002,2200,0220) [0111] 

6 (2000,0200,0020,0002) [1011]  47 (2221,1022,2002,2100) [1221] 

7 (2120,0212,2221,1022) [1111]  48 (0201,1120,0112,2211) [0111] 

8 (1102,2010,0201,1120) [2121]  49 (2220,0222,2222,2122) [1101] 

9 (2020,0202,2220,0222) [1111]  50 (1220,0122,2212,2121) [2101] 

10 (1011,1201,1220,0122) [2121]  51 (2012,1222,2000,0212) [0001] 

11 (1100,1200,2012,1222) [0201]  52 (1221,1002,2120,2010) [0001] 

12 (1001,1122,1221,1002) [0201]  53 (2021,2202,1102,0202) [0001] 

13 (0221,1211,2021,2202) [0201]  54 (0022,0021,2020,1201) [0001] 

14 (1111,1212,0022,0021) [0201]  55 (0210,1202,1011,0100) [0001] 

15 (1121,0220,0210,1202) [0201]  56 (1021,2111,1000,0121) [0001] 

16 (2200,2100,1021,2111) [0201]  57 (2112,2001,1210,1020) [0001] 

17 (2002,2211,2112,2001) [0201]  58 (1012,1101,2201,0101) [0001] 

18 (0112,2122,1012,1101) [0201]  59 (0011,0012,1010,2102) [0001] 

19 (2222,2121,0011,0012) [0201]  60 (0120,2101,2022,0200) [0001] 

20 (2212,0110,0120,2101) [0201]  61 (0100,1100,1101,1112) [0001] 

21 (0001,0011,0121,1001) [0001]  62 (0121,1001,0012,0102) [0001] 

22 (2011,0120,1020,0221) [0001]  63 (1020,0221,2101,1110) [0001] 

23 (2210,2012,0101,1111) [0001]  64 (0101,1111,1222,2110) [0001] 

24 (0111,1221,2102,1121) [0001]  65 (2102,1121,1002,0020) [0001] 

25 (0211,2021,0200,2200) [0001]  66 (0200,2200,2202,2221) [0001] 

26 (0002,0022,0212,2002) [0001]  67 (0212,2002,0021,0201) [0001] 

27 (1022,0210,2010,0112) [0001]  68 (2010,0112,1202,2220) [0001] 

28 (1120,1021,0202,2222) [0001]  69 (0202,2222,2111,1220) [0001] 

29 (0222,2112,1201,2212) [0001]  70 (1201,2212,2001,0010) [0001] 
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The translation plane π under study is constructed through the 3-spread set C     over  F by considering  

4-dimensional subspaces Vi  ,            of V(8,3) , the 8-dimensional vector space over F  as follows: 

Let   Vi = {(x ,y)  /  y = x Mi , x F
4
  },           ,    V 81 = { (0,y) / y  F

4
}.The incidence structure 

whose points are vectors of V = F
8
 and whose lines are Vi ,            and their cosets in the additive 

group of V with inclusion as incidence relation is the translation plane π associated with the 3-spread set C  .   

Left and Middle nuclei of the t-spread set : If C       is a t-spread set then   

    Mλ = { M   C          ׀   C     M    =   C    } 

               Mµ =  { M   C          ׀   MC      =   C    } 

Left nucleus Mλ and middle nucleus Mµ  are multiplicative groups of GL(t+1,q) and if M   C    and  M
2
   C   

Then M    Mλ         Mµ. It can be observed that the left and middle nuclei of the above 3-spread set C    are 

as given below 

Left Nucleus  :  Mλ  = G        A1G       =  < M3 , M21 │ M 3
5
 = I, M21

 8 
 = I, M21

-1
 M3 M21 = M3

3  
> 

Left nucleus is a meta cyclic group of order 40. 

Middle nucleus  Mµ :  Mµ  = G      A3G     =  < M3 , M61 │ M 3
5
 = I, M61

 8 
 = I, M61

-1
 M3 M61 = M3

3  
> 

Middle nucleus is also a meta cyclic group of order 40.   

V-W system associated with the spread set C      

Let (Q,+, ∙ ) be a system constructed from the 3-spread set C     where Q = F
4
, the operation ‘ +’ is the 

ordinary vector sum. Let e = (1000 ). For each y    Q there is a unique matrix M   C      ( denoted by M(y)) 

such that  

y = e M. For   x ,y    Q ,y ≠  0 define y.x=  x  M(y) and 0.x=0. The system (Q, +  ,  ∙ ) is a left V-W system 

coordinatizing the translation plane  π. Let Nλ, Nµ be the left and middle nuclei of the V-W system  (Q,+, ∙) 

So Nλ = < ( 1210),(0001) >  and  Nµ = <  (1210),(0100 ) >. Nλ    Nµ contains a unique cyclic subgroup 

generated by g of order 10 where g= (1210).  

V-W system is a λ -system:          

The quadruples of Q are indexed as follows  Q = {xi ׀  xi = e Mi , Mi    C    , 0 ≤  i  ≤ 80}.x2=(1210)=g 

30 (0122,1012,0100,1100) [0001]  71 (1200,2000,0222,0120) [0001] 

31 (1222,0201,0110,2022) [0001]  72 (1122,2120,0122,2012) [0001] 

32 (1002,2220,1200,2000) [0001]  73 (1211,1102,0001,1221) [0001] 

33 (2202,1220,1122,2120) [0001]  74 (1212,2020,2011,2021) [0001] 

34 (0021,0010,1211,1102) [0001]  75 (0220,1011,2210,0022) [0001] 

35 (1202,1112,1212,2020) [0001]  76 (2100,1000,0111,0210) [0001] 

36    (2111,0102,0220,1011) [0001]  77 (2211,1210,0211,1021) [0001] 

37 (2001,1110,2100,1000) [0001]  78 (2122,2201,0002,2112) [0001] 

38 (1101,2110,2211,1210) [0001]  79 (2121,1010,1022,1012) [0001] 

39 (0012,0020,2122,2201) [0001]  80 (0110,2022,1120,0011) [0001] 

40 (2101,2221,2121,1010) [0001]  81                -----  
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We observe the following:    

 X10j+1 . g =   g
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                          λ( X10j+1) = 0  where j=0,4 

              = 2             j=1,5 

              = 1              j=2,6     I 

              = 3              j= 3,7   

For               define              λ( X10j+i) =  λ( X10j+1)      II 

Now we see    X10j+i . g = g

)10(
3 ijX 

. X10j+i      gM(X10j+i) = X10j+i M(g

)110(
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 )  

                                    g A
1j M11

k
M2

i-1
 = e A

1j
 M11

k
M2

i-1
M2

)110(
3 jX

 

                                   g A 1j M11
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1j M11
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)110(
3 jX

 

                     X10j+1.g =  g

)110(
3 jX

. X10j+1 

From the above it is clear that the mapping λ : Q
*
 Z4 ( integers modulo 4) defined in  I and II satisfy the 

property x. g = g

 x3
 .x for all x Q

*
. [By theorem in 13 pp 541]  V-W system is a λ-  system. 

 

3. Collineations of the translation plane π  

Any non- singular linear transformation on V=F
8 

 induces a collineation of π fixing the point corresponding 

to the zero vector if and only if the linear transformation permutes the subspaces Vi ,        among 

themselves.  Equivalently , a non singular linear transformation T= 








ED

CB
, where B,C,D and E are 4x4 

matrices over F, induces a collineation of π fixing the point corresponding to the zero vector if and only if 

the following conditions (a) and (b) are satisfied.[17,Theorem 1]  



DOI: 10.18535/ijsrm/v4i12.06 
 

K.Annapurna, IJSRM volume 4 issue 12 Dec 2016 [www.ijsrm.in] Page 4948 

 (a)  If D is non-singular ,then D
-1

E C     , if D is singular then D is the zero matrix and E is  non-

singular. 

 (b) For M C    if  ( B+MD ) is non-singular ,then (B+MD)
-1

(C+ME) C      if  (B+MD) is singular 

then (B+MD) is the zero matrix and (C+ME) is non- singular. 

 The group of all collineations leaving the point corresponding to the zero vector of π invariant is 

called the translation complement of π. Through out this paper, by a collineation we mean a collineation 

from the translation complement of π.  

3.1 Collineations  corresponding to the Left and middle nuclei  

The  mappings     [
  
   

] ,     [
  
    

] ,    [
  
    

] ,      [
  
   
  

] 

      [
   
   
  

] are all collineations of  π and the actions of the collineations      on the set of i.ps. of  π 

are furnished below: 

          

    (0)(81)(1,2,…,10)(11, 12,…,20)(21,22,…,30)(31,32,…,40) 

                    (41 ,42,…,50)(51,52,…,60)(61,62,…,70)(71,72,…,80) 

               (0)(81)(1,11,6,16)(2,20,7,15)(3,19,8,14)(4,18,9,13)(5,17,10,12) 

                  (21,31,26,36)(22,40,27,35)(23,39,28,34)(24,38,29,33)(25,37,30,32) 

                  (41,51,46,56)(42,60,47,55)((43,59,48,54)(44,58,49,53)(45,57,50,52) 

                  (61,71,66,76)(62,80,67,75)(63,79,68,74)(64,78,69,73)(65,77,70,72) 

Also             ,                 ,        
          ,          

          ,    i = 1,2. 

The actions of  the collineations              on the set of i.ps of π are computed and  furnished below. 

        :       (0)(81)(1,21,12,32,6,26,17,37)(2,24,11,39,7,29,16,34) (3,27,20,36,8,22,15,31)      

                 (4,30,19,33,9,25,14,38) (5,23,18,40,10,28,13,35)(22,60,40,47,27,55,35,42) 

                 (23,51,31,48,28,56,36,43)(41,62,52,71,46,67,57,76) (42,65,51,78,47,70,56,73)  

                 (43,68,60,75,48,63,55,80) (44,61,59,72,49,66,54,77)(45,64,58,79,50,69,53,74) 

      :       (0)(81)(1,2,3,4,5,6,7,8,9,10)(11,20,19,18,17,16,15,14,13,12) 

                (21,24,27,30,23,26,29,22,25,28) (31,38,35,32,39,36,33,40,37,34) 

                (41,42,43,44,45,46,47,48,49,50)(51,60,59,58,57,56,55,54,53,52) 

                (61,64,67,70,63,66,69,62,65,68)(71,78,75,72,79,76,73,80,77,74) 

    :         (0)(81)(1,61,11,71,6,66,16,76)(2,62,12,72,7,67,17,77)  (3,63,13,73,8,68,18,78)  

                (4,64,14,74,9,69,19,79)  (5,65,15,75,10,70,20,80)(21,59,39,46,26,54,34,41) 

                (25,53,33,50, 30,58,38,45) 
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Let     =    
2
. Now      =   







 

I

M

0

01

11   is a collineation of π and its action on the set of i.ps of π  follows 

from the action of     and is given below:   

 

   :       (0)(81) (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,20)(5,15,10,20) (21,32,26,37) (22,33,27,38)  

             (23,34,28,39) (24,35,29,40) (25,36,30,31)(41,59,46,54) (42,60,47,55) (43,51,48,56) (44,52,49,57)  

             (45,53,50,58) (61,80,66,75) (62,71,67,76) (63,72,68,77) (64,73,69,78) (65,74,70,79) 

Homology groups; [ 9,pp 385]: From the left nucleus of the plane and the collineations α, λ it is clear that           

< α , λ > is the ((∞),[0,0] )- homology group H1 of π. From the middle nucleus and the collineations     ,     

of π 

 <    ,     > is the ( (0), [0] )-homology group H2 of π.Both homology groups are meta cyclic groups of order 

40.The collineation group < H1 , H2  >  = < α,λ,   ,    > divides the set of i.ps of π into three orbits O  i , i = 

1,2,3 of lengths 1, 1, 80 where O1 = {0}, O2 = {81}, O3 = *                   +  

3.2 Conjugacy collineations of the plane 

A mapping δ = 








A

A

0

0
 , where A GL(4,3) induces a conjugation collineation of π if A

-1
C  A =  C   .  The 

set of all conjugation collineations of π forms a group called the conjugation collineation group, and this 

group  fixes the ideal points corresponding to V(0),V(∞), and V(I). Conjugacy collineations of the plane 

keeps the left and middle nuclei of C   invariant. From Table 1  the matrices Mi ,i = 3,5,7,9 are the only 

matrices with C.P [1111] and the matrices Mi , i  = 41,43 are the only matrices with C.P  [0121]. So every 

collineation either fixes the          i.p 41 or flips the i.ps 41,43 while keeping the set of i.ps S={ 3,5,7.9 } 

invariant. In order to keep the set of i.ps of S invariant under δ the matrix A of δ belong to the following 

sets:   

   K1 = Z(M3)   Z(M41)                          K4 = Z(M3)   T(M41,M43) 

   K2= T(M3 , M9)   Z(M41)                 K5 = T(M3 , M9)   T(M41,M43)         

   K3 = T (M3,M7)   Z(M41)                   K6 = T(M3 , M7)   T(M41,M43) 

The sets K2, K3, K4, K6  are empty. K1 = Z(M3), K5  = T(M3,M9). No conjugacy collineation maps the i.p 3 

onto the i.p 7 and every conjugation collineation either fixes the i.ps 3 and 41 or flips the i.ps 3, 9 and 41, 

43. 

Also since MλMµ = G  . each matrix of G    induces a conjugacy collineation .Let δ1 =   
-1

α, δ2 =   
-1

β. 

The mappings δ1 and δ2 are collineations of  π since they are product of collineations. < δ1, δ2 > is a 

subgroup of G0,81,1 and is isomorphic to G 

The actions of  the conjugation collineations    ,    on the set of i.ps. of π can be computed from the actions 

of   ,     ,    and are furnished below: 

       :     (0)(81)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11,13,15,17,19)(12,14,16,18,20) (21,29,27,25,23)        

               (22,30,28,26,24) (31,35,39,33,37)(32,36,40,34,38)(41)(42)(43)(44) (45)(46)(47)(48)(49)(50)      

               (51,53,55,57,59)(52,54,56,58,60)  (61,69,67,65,63) (62,70,68,66,64)  (71,75,79,73,77)  



DOI: 10.18535/ijsrm/v4i12.06 
 

K.Annapurna, IJSRM volume 4 issue 12 Dec 2016 [www.ijsrm.in] Page 4950 

                (72,76,80,74,78) 

             (0)(81)(1)(2,10)(3,9)(4,8)(5,7)(6)(11)(12,20)(13,19)(14,18)(15,17)(16) 

                 (21,23)(22)(24,30)(25,29)(26,28)(27)(31,39)(32,38)(33,37)(34,36)(35)(40) 

                 (41,43)(42)(44,50)(45,49)(46,48)(47)(51,59)(52,58)(53,57)(54,56)(55)(60) 

                 (61)(62,70)(63,69)(64,68)(65,67)(66)(71)(72,80)(73,79)(74,78)(75,77)(76) 

From the actions of the collineations    and     on the set of i.ps. of  π it is clear that the collineation  group 

  <   ,    > is transitive on the set of i.ps.  {3,9},{11,13,15,17,19}and {12,14,16,18,20}separately. 

If     =  *
  
  

+ is a mapping fixing the i.ps.  3 and 11 then the matrix A of     belongs Z(M3)   Z(M11), 

where 

 

   Z(M3)   Z(M11) = { (   )   (

      
        
        
       

)   (   )  (   )      }      

 

If A=A(1,1)
2
 = ( 0112,2211,1021,1202)  then A

-1
M21 A=M26 , A

-1
M41A=M41 , A

-1
M61A=M66 

If A of δ is such that A
-1

 G A = G    then δ induces a collineation of π fixing the i.ps 0,81,1if and only if 

 A
-1

M20i+1A,       belong to distinct left cosets of  G   .Hence A=A(1,1)
2
 induces a conjugation 

collineation. 

Also all even powers of A(1,1) induce  conjugation  collineations and the odd powers of A(1,1) do not 

induce conjugation collineations. So G0,81,1,3,11 = < δ3 > where δ3= *
  
  

+ and A=A(1,1)
2
.       δ3 is of order 

4.  

 The action of the collineation    on the set of i.ps. of π is computed and furnished below: 

      (0)(81)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21,26) 

         (22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40)(41)(42)(43)(44)(45)(46) 

         (47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61,66)(62,67)(63,68)(64,69)(71,76) 

         (73,78)(74,79)(75,80).     

If     = (
  
  

) is a mapping fixing the i.p.  3 and mapping the i.p. 11 onto the i.p.12 then the    

matrix A of     belongs to  

Z(M3)   T(M11,M12) = { (   )  (

         
      
        
        

)         (   )  (   ) }  



DOI: 10.18535/ijsrm/v4i12.06 
 

K.Annapurna, IJSRM volume 4 issue 12 Dec 2016 [www.ijsrm.in] Page 4951 

 

 

It may be seen that no matrix of this set keeps C   invariant under conjugation. From this no matrix of this 

set yields a conjugation collineation and thus no conjugation collineation of π which fixes the i.p 3 maps the         

i.p 11onto the i.p 12.  

 

G0,81,1,3 = G0,81,1,3,11 {  

5

1

i

 G0,81,1,3,11 δ1
i
 } = < δ1 , δ3 > 

│ G0,81,1,3│ = 5 │ G0,81,1,3,11│= 5x4=20 

If  δ5 = (
  
  

) is a mapping flipping the i.ps 3,9 and mapping the i.p 11 onto the i.p 12 then the matrix A of 

δ5 

belongs to T(M3,M9) T(M11,M12). Analysing as in the earlier case no matrix of this set yields a 

conjugation collineation. From this we conclude that no conjugation collineation which flips the i.ps 3 and 9 

maps the i.p 11 onto the i.p 12.Hence the collineation group G0,81,1 is transitive on the set of i.ps {3,9} and 

{11,13,15,17,19} separately. Now 

G0,81,1 = G0,81,1,3     G0,81,1,3 δ2  = < δ1 , δ2 , δ3 > 

Since G0,81,1 is transitive on {3,9} 

                                                      │ G0,81,1,│ = 2 │ G0,81,1,3│= 2x20=40 

In the above discussion we have seen that the collineation group G0,81,1,3,11  flips the i.ps 21 and 26. If  

δ6 = (
  
  

) is a mapping that fixes the i.ps 0,81,1,3,11 and 21 then the matrix A of δ6 belongs to  

Z(M3) Z(M11) Z(M21).By a straight forward computation we see that A= ±I. The mapping δ6 induces a 

scalar collineation which fixes all the i.ps .and  

     G0,81,1,3,11,21 = < δ6  >  F
*
 

Thus G0,81,1,3,11,21 is the ((0,0),[∞])- homology group H3 of π and hence gives the kernel of π.Thus the kernel 

K of Q is isomorphic to F .Hence the kernel of π is trivial.  

The collineation group < α, λ, γ1, γ2 > fixes the i.ps 0 and 81 and is transitive on O  3. 

  G0,81 = 










































20

1

21,81,0

20

1

1

21,81,0

20

1

1,81,0

20

1

1,81,0

i

i

i

i

i

i

i

i GGGG  where i is a 

collineation from the collineation group < α,β > mapping the i.p 1 onto the i.p  i ,       while fixing the 

i.ps  0 and 81. 

  G0,81 = < δ1, δ2, α, β, λ, γ2 > = < α, λ, γ2 ││, γ1 > since β = λ
2
α

-1
 and < δ1,δ2 >   < α, λ, γ1, γ2 > 
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    │ G0,81 │= 80 │ G0,81,1 │= 80x40 = 3200 

3.3 Translation complement of π 

Let    (
  
  

) where A = (1000,0001,0011,0121). It may be seen that             , M   C   and  

V0   = V81 , V81   = V0.     Further  

         
           ,  A1 = M21   M29,      A2 = M41   M50,       A3 = M61   M37 

For                     we have 

          : M10j + i    A
-1

M2 
1-i

 M11 
-k

     
  

  A where j1 = *
 

 
+ , k = j – 2j1 

                         = ( A
-1

 M2
 1-i

 A)( A
-1

 M11
-k

 A)(A
-1

    
  

  A) 

   =   
 (   )

   
  ( A

-1
    
  

  A) 

For various values of j; j1 takes the values 0,1,2,3. When j = 0 or 1 then j1 = 0 and 

  : M10j + i      
 (   )   

    C . When j = 2 or 3 then j1 = 1 and   : M10j + i      
 (   )   

      C  

 since  < M2 , M11>     . When j = 4 or 5 ,   : M10j + i      
 (   )   

       C  since G       .  

Also when j = 6 or 7,    sends M10j + i  onto   
 (   )   

       C  as M2 , M11     . This shows that   

permutes the non zero matrices of  C  among themselves. From this it follows that   is a collineation of   

flipping the i.ps 0,81 and fixing the i,p. 1. 

It may be seen that V0   = V81 , V81   = V0 , V1   = V1 , V21   = V79 , V41   = V50 ,V61   = V37 and 

           
  ,           

     
   . From these relations we get the following: 

                        V1+ i   =                    where        (     ) 

  V11+ i   =                      where          (     ) 

  V21+ i   =                      where          (     ) 

  V31+ i   =                      where         (     ) 

                      V41+ i   =                      where          (     ) 

           V51+ i   =           where          (     ) 

                      V61+ i   =           where          (     ) 

           V71+i   =         

 

 

    

The action of the collineation   on the set of i.ps. of   is now given by  
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  : (0,81)(1)(2,8,10,4)(3,5,9,7)(11,17,15,19)(12,20,14,16)(13)(18)(21,79,24,76) (22,78,23,77)     

      (25,75,30,80)(26,74,29,71)(27,73,28,72)(31,66,32,67)(35,68,40,65)(34,69,39,64) 

      (35,70,38,63)(36,61,37,62)(41,50,43,44)(42,47)(45,48,49,46) (51,54,53,60)(52,57)(55,56,59,58) 

It may be noted that the collineation group < G0,81,   > divides the set of i.ps. into two orbits O 1 = {0,81} 

and 

 O 2 = { i | 1     80 }. Further G 0,81   gives the set of all collineations of   that flips the i.ps. 0 and 81. 

3.4 Non existence of certain collineations 

Lemma  1. (a) No collineation of   maps the i.p. 1 onto the i.p. 81(0) and the i.p.81(0) onto the i.p. 0(81). 

                   (b) No collineation of   maps the i.p. k onto the i.p. 81(0) and the i.p.81(0) onto the i.p. 0(81). 

                   (c)  Every collineation that fixes the i.p. 0(81) also fixes the i.p.81(0) i.e.,G0 = G81 = G0,81. 

Proof. If   has a collineation which maps the i.p.1 onto the i.p. 81 and the i.p.81 onto the i.p. 0 then by a 

Lemma [16,chapter 3]  M+M1   C  for all M   C  . This condition does not hold since  

M21 + M1 = (1001,0111,0101,1002)   C  . This shows that no collineation of   maps the i.p. 1 onto the i.p. 

81 and the i.p.81 onto the i.p. 0. 

        If   is a collineation with the following action  

                        : (1,0.81,…,…,…)   

  

Then         maps the i.p. 1 onto the i.p.81 and the i.p. 81 onto the i.p. 0 – a contradiction to the above. 

This proves the first part of the lemma. 

Let    (    ) be a collineation mapping the i.p. k onto the i.p.81(0)  and the i.p. 81(0) onto the i.p.0(81). Since        

G 0,81 fixes the i.ps. 0 and 81 and is transitive on the remaining i.ps., there exists a collineation     G0,81 

which maps the i.p. 1 onto the i.p. k. Then      
  (     

  ) maps the i.p. 1 onto the i.p. 81(0) and the i.p. 

81(0) onto the i.p. 0(81) – a contradiction to the first part of the lemma. We have already seen that   is a   – 

plane  and Q is a   – system with proper kern. By a result of  Foulser [6.pp.390] No collineation of    fixes 

the i.p. 0 (81) and moves the i.p.81(0) i.e., every collineation of   that fixes the i.p.0 also fixes the i.p.81. 

 Therefore G0 = G81= G0,81. This proves the last part of the lemma. 

Lemma  2  Every Collineation of   either fixes both the i.ps. 0 and 81 or flips them. 

Proof. In view of the above lemma no collineation of    maps the i.p. k onto the i.p. 0(81) via the i.p.81(0),  

k  0 (k   81), every collineation of   that fixes the i.p.81 also fixes the i.p.0 and vice versa. 

       Assume that    is a collineation of   mapping the i.ps. 0 and 81 onto any two i.ps. other than 0 and 81. 

Using the transitivity of G0,81 on the set of i.ps. other than the i.ps.0 and 81 we can take without loss of 

generality that   maps the i.p. 0 onto the i.p. 1. This plane   has a  collineation   which fixes the i.p. 1 and 

moves the remaining i.ps. except 6,13,18.  

Now in view of  lemma  [16,chapter 3] no collineation of   moves the i.p. 0 onto the i.p. 1 and the i.p.81 

onto the i.p. k, where k   {6,13,18}. But   has a collineation    which fixes the i.p. 1 moves both the i.ps. 

13 and 18 and again by the same lemma [16,chapter 3] we get that no collineation of   maps the i.p.0 onto 
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the i.p. 1 and the i.p.81 onto either the i.p. 13 or the i.p.18.Thus the collineation   must map the i.p.81 onto 

the i.p. 6 while mapping the i.p.0 onto the i.p. 1. By a result of Maduram [12,pp 487]. the spread sets C  and 

C  1,6,k must be conjugate where k   1,6 and 

 

C  1,6, k = [ Ni = {(Mi – M6)
-1

 – ( M1 -M6 )
-1

} – {(Mk – M6)
-1

-(M1-M6)
-1

}| Mi   C  ] 

i.e., C  1,6, k  is a 3-spread set of   with V1, V6 and Vk as the fundamental subspaces (y = 0, x = 0, y = x).It 

may be observed that every matrix of C  is of det 1 and the spread set C 1,6 contains  matrices of 

determinants 1 and 2. The matrices N0, N1   C  1,6, 0  are of det 1 and N4 is of det 2 (table .2). It now follows 

that the spread sets C  1,6, k  for any k   1,6  contains matrices of det 1 and det 2. Thus the spread sets C  and 

C  1,6, k  are not conjugate for any k – a contradiction. From this it follows that no collineation of   maps the 

i.p. 0 onto the i.p. 1 and the i.p.81 onto the i.p. 6. Thus no collineation of   moves both the i.ps. 0 and 81 

outside the orbit {0, 81}.Therefore every collineation of   either fixes both the i.ps. 0 and 81 or flips them. 

        

 Table 2 

 

i 

           

                    

              Mi - M6 

 

 

                 

             (Mi-M6)
-1 

 

 

 

Xi= (Mi – M6)
-1 – ( M1 -M6 )

-1 

 
         

             N i= XiXi
-1 

 

Det Ni 

0 
 

 

1 
 

2 
 

3 
 

4 
 

5 

6 

(1000,0100,0010,0001) 
 

(2000,0200,0020,0002) 
 

(2210,0221,1122,2012) 
 

(0201,1120,0112,2211) 
 

(2010,0201,1120,0112) 
 

(0022,2202,2120,0212 
 

(0000,0000,0000,0000) 

(1000,0100,0010,0001) 
 

(2000,0200,0020,0002) 
 

(2211,1021,1202,2020) 
 

(2012,2101,1010,0101) 
 

(2101,1010,0101,1110) 
 

(2110,0211,1121,1212) 
 

  

(2000,0200,0020,0002) 

 

0 
 

(0211,1121,1212,2021) 
 

(0012,2201,1020,0102) 
 

(0101,1110,0111,1111) 
 

(0110,0011,1101,1210) 
 

  

(1000,0100,0010,0001) 

 

0 
 

(0122,2212,2121,1012) 
 

(0021,1102,2010,0201) 
 

(0202,2220,0222,2222) 
 

(0220,0022,2202,2120) 
 

  

   1 

 

    0 
 

   1 
 

    2 
 

    2 
 

   1 
 

   -- 

 

Theorem: The translation complement G of the translation plane   is given by G = <                It is 

of order 6400 and divides the set of i.ps.  into two orbits of lengths 2 and 80 where the small orbit consists of 

the i.ps. 0 and 81. 

Proof: The collineation group <               is a subgroup of G. If   is any collineation of    then by the 

above lemma 2,   either belongs to G0, 81 or G0, 81  . 

Thus    < G0, 81 ,   > = <                . Thus G = <                and G divides the set of i.ps. of    

into two orbits of lengths 2 and 80, where the smaller orbit consists of the i.ps.0 and 81.Since G flips 0 and 

81 
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   | G | = 2 | G0 | = 2 | G0,81 | = 2x 3200 = 6400. 

Hence the theorem. 
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