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Summary: A translation plane of order 3" is constructed. It is shown that the plane is a generalized Andre
plane and computed the translation complement of the plane .1t is found to be of order 6400.

1. Introduction

Rao and Davis have given [14 ] the construction of translation planes through t-spread sets. It may be
recalled that Bruck and Bose have contributed to the theory of t-spread sets over finite fields for the
construction of non Desarguesian translation planes through their papers [ 1], [2] . In this paper we have
constructed a translation plane = of order 3* using 3- spread sets . This plane is shown to be a generalized
Andre plane applying the technique given by D.A.Foulser [6 ]. By making use of the properties of the
collineation groups of the plane n the translation complement of the plane 7 is computed and found to be of
order 6400.

2. Description of the plane & and identifying the plane as a generalized Andre system

It is well known that a translation plane = of finite order can be coordinatized by a V-W system. Conversely
given a V-W system (Q,+, -) a translation plane 7(Q) can be associated with Q [8,pp 362]. A V-W system
can be constructed from a t-spread set.[1,pp95]. Thus the construction of translation plane of order g
reduces to the construction of t-spread set. [3,,pp220]

t-spread set : Let t be a positive integer . A set Z of (t+1) by (t+1) matrices over F is a t-spread set over F
if it satisfies
a) | | =9g*, @ containsthe zero and identity matrices.
b) Forall X,Ye &, X #Y =>det (X-Y) #0.
Here det A denotes the determinant of the matrix A.
Through out this paper F, ( abcd,efgh klmn,pgrs) and i.p denote the Galois Field GF(3) ,the 4x4 matrix

a b ¢ d

e f
and ideal point respectively.

>

g
k | m
p q r
For M,N € GL(4,3), T(M, N) = {A€GL(4,3) | A'MA=N} ,.Z(M) = T(M,M).

w

Let G denote the translation complement of the translation plane 7; Go (Ggz) denotes the collinetion
subgroup of G fixing the i.p 0 (81); Gy g1 denotes the (autotopism) collineation subgroup of G fixing the i.ps
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0,81 and G g1 1 denotes the subgroup of G ( conjugation collineation group) fixing the i.ps 0,81,1;In general
Gijk1m denotes the collineation subgroup of G fixing the i.ps i, j,k ,I ,m.

The translation plane & under study is constructed through a 3- spread set & over F .The spread set ¢ is

given by

Z={0JUA0 C UAL CUAZCUA;Z.

where & =<X)Y /X, YEGL(4,33), X°=1,Y?=—1,Y'XY = X" > isameta cyclic group of order 20 in
GL(4,3) where X =(2120,0212,2221,1022) , Y =(1100,1200,2012,1222)

and Ay =(1000,0100,0010,0001)
A; =( 0001,0011,0121,1001)
A, =(0010,0001,1100,0110)
Az = (0100,1100,1101,1112)
Table 1
| Mi C.P of Mi [ Mi C.P of Mi
0 (0000,0000,0000,0000) 41 (0010,0001,1100,0110) [0121]
1 (1000,0100,0010,0001) | [2021] 42 (1122,2011,1001,1200) [2211]
2 (1210,0121,1112,2011) | [2121] 43 (0102,2210,0221,1122) [0121]
3 (2201,1020,0102,2210) | [1111] 44 (1110,0111,1111,1211) [2101]
4 (1010,0101,1110,0111) | [2121] 45 (2110,0211,1121,1212) [1101]
5 (2022,2102,2110,0211) | [1111] 46 (0020,0002,2200,0220) [0111]
6 (2000,0200,0020,0002) | [1011] 47 (2221,1022,2002,2100) [1221]
7 (2120,0212,2221,1022) | [1111] 48 (0201,1120,0112,2211) [0111]
8 (1102,2010,0201,1120) | [2121] 49 (2220,0222,2222,2122) [1101]
9 (2020,0202,2220,0222) | [1111] 50 (1220,0122,2212,2121) [2101]
10 (1011,1201,1220,0122) | [2121] 51 (2012,1222,2000,0212) [0001]
11 (1100,1200,2012,1222) | [0201] 52 (1221,1002,2120,2010) [0001]
12 (1001,1122,1221,1002) | [0201] 53 (2021,2202,1102,0202) [0001]
13 (0221,1211,2021,2202) | [0201] 54 (0022,0021,2020,1201) [0001]
14 (1111,1212,0022,0021) | [0201] 55 (0210,1202,1011,0100) [0001]
15 (1121,0220,0210,1202) | [0201] 56 (1021,2111,1000,0121) [0001]
16 (2200,2100,1021,2111) | [0201] 57 (2112,2001,1210,1020) [0001]
17 (2002,2211,2112,2001) | [0201] 58 (1012,1101,2201,0101) [0001]
18 (0112,2122,1012,1101) | [0201] 59 (0011,0012,1010,2102) [0001]
19 (2222,2121,0011,0012) | [0201] 60 (0120,2101,2022,0200) [0001]
20 (2212,0110,0120,2101) | [0201] 61 (0100,1100,1101,1112) [0001]
21 (0001,0011,0121,1001) | [0001] 62 (0121,1001,0012,0102) [0001]
22 (2011,0120,1020,0221) | [0001] 63 (1020,0221,2101,1110) [0001]
23 (2210,2012,0101,1111) | [0001] 64 (0101,1111,1222,2110) [0001]
24 (0111,1221,2102,1121) | [0001] 65 (2102,1121,1002,0020) [0001]
25 (0211,2021,0200,2200) | [0001] 66 (0200,2200,2202,2221) [0001]
26 (0002,0022,0212,2002) | [0001] 67 (0212,2002,0021,0201) [0001]
27 (1022,0210,2010,0112) | [0001] 68 (2010,0112,1202,2220) [0001]
28 (1120,1021,0202,2222) | [0001] 69 (0202,2222,2111,1220) [0001]
29 (0222,2112,1201,2212) | [0001] 70 (1201,2212,2001,0010) [0001]
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30 |(0122,1012,0100,1100) | [0001] 71 [ (1200,2000,0222,0120) [0001]
31 | (1222,0201,0110,2022) | [0001] 72 | (1122,2120,0122,2012) [0001]
32 | (1002,2220,1200,2000) | [0001] 73 | (1211,1102,0001,1221) [0001]
33 | (2202,1220,1122,2120) | [0001] 74 | (1212,2020,2011,2021) [0001]
34 |(0021,0010,1211,1102) | [0001] 75 | (0220,1011,2210,0022) [0001]
35 | (1202,1112,1212,2020) | [0001] 76 | (2100,1000,0111,0210) [0001]
36 | (2111,0102,0220,1011) | [0001] 77 | (2211,1210,0211,1021) [0001]
37 |(2001,1110,2100,1000) | [0001] 78 | (2122,2201,0002,2112) [0001]
38 | (1101,2110,2211,1210) | [0001] 79 | (2121,1010,1022,1012) [0001]
39 | (0012,0020,2122,2201) | [0001] 80 | (0110,2022,1120,0011) [0001]
40 | (2101,2221,2121,1010) | [0001] 81 |

The translation plane = under study is constructed through the 3-spread set & over F by considering
4-dimensional subspaces Vi ,0 < i < 81 of V(8,3) , the 8-dimensional vector space over F as follows:

Let Vi={(x,y) / y=xM;,xeF" },0 <i <80, Vg={(0y)/y e F*}.The incidence structure
whose points are vectors of V = F® and whose lines are Vi, 0 < i <81 and their cosets in the additive

group of V with inclusion as incidence relation is the translation plane = associated with the 3-spread set .
Left and Middle nuclei of the t-spread set : If & is a t-spread set then

M,={MeZ% | M=%}

My={MeZw |IMZ =&}
Left nucleus M, and middle nucleus M, are multiplicative groups of GL(t+1,q) and if M € % and M2 g &

ThenM ¢ M, o M. It can be observed that the left and middle nuclei of the above 3-spread set Z are
as given below

LeftNucleus : M, = € U AiZ = <M, Myt | M3° =1, M1 ® = 1, My M3 My = Mg® >
Left nucleus is a meta cyclic group of order 40.

Middle nucleus My: My = € U A;E = <Mz, Mg1 | M3 =1, M1 ® =1, Mgg ™ M3 Mgy = M3® >
Middle nucleus is also a meta cyclic group of order 40.

V-W system associated with the spread set ¢

Let (Q.+, - ) be a system constructed from the 3-spread set & where Q = F*, the operation ‘ + is the
ordinary vector sum. Let e = (1000 ). For each y € Q there is a unique matrix M € & ( denoted by M(y))
such that

y=eM.For x,y€ Q,y# 0define y.x= x M(y) and 0.x=0. The system (Q, + , - ) is a left V-W system
coordinatizing the translation plane m. Let N, Ny, be the left and middle nuclei of the V-W system (Q,+, -)

So N, =<(1210),(0001) > and N, =< (1210),(0100) >. N, n N, contains a unique cyclic subgroup
generated by g of order 10 where g= (1210).

V-W system is a A -System:
The quadruples of Q are indexed as follows Q ={xi| Xi=eM;,M; € € .0< 1 <80}.x,=(1210)=¢g

K.Annapurna, I/SRM volume 4 issue 12 Dec 2016 [www.ijsrm.in] Page 4946



DOI: 10.18535/ijsrm/v4i12.06

We observe the following:

31()(10]'_,_1) 3/1(X10j+1)
Xj+1-9= @ Xuojrr - = 9 M(X0j41) = Xaoja M(Q

A(X10j+1)
k i-1 k i-1 3
@gAlelle ZEAh M1 My "M,

3ﬂ(><10j+1)
<:I>g/°\j1 Mllk ZEAlellk M,

3/1(X10j+1)
<g=e(Aj (Mu M, M ) Aj )

< M Xigj+1) =0 where j=0,4

=2 j=1,5

=1 j=2,6 |

=3 j=37
For0 <j<7,1<1i<10define M X10j+i) =M X10j+1) 1

3}“(X10j+i) 31(X10j+l)
Now we see  X10j+i-9 =0 X = IM(Xaoj+i) = Xiojei M(g )
A(X10j+1)
=( A N Mllkle-l =eA i Mllkle-le
31(X10j+1)

@gAjl Mllk :eAjl MllkMz
3/l(><10j+1)
< Xi0j+1.0= ¢ + X10j+1

From the above it is clear that the mapping A : Q — Z4 (integers modulo 4) defined in | and I1 satisfy the
31(X) .
property X. g =g X forall x eQ . [By theorem in 13 pp 541] V-W system is a A- System.

3. Collineations of the translation plane «

Any non- singular linear transformation on V=F® induces a collineation of = fixing the point corresponding
to the zero vector if and only if the linear transformation permutes the subspaces V;, 0 < i < 81 among

B C
themselves. Equivalently , a non singular linear transformation T:{D E} , Where B,C,D and E are 4x4

matrices over F, induces a collineation of & fixing the point corresponding to the zero vector if and only if
the following conditions (a) and (b) are satisfied.[17,Theorem 1]
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(a) If D is non-singular ,then D'E e & . if D is singular then D is the zero matrix and E is non-
singular.

(b) For M e # if (B+MD ) is non-singular ,then (B+MD)*(C+ME) e & if (B+MD) is singular
then (B+MD) is the zero matrix and (C+ME) is non- singular.

The group of all collineations leaving the point corresponding to the zero vector of « invariant is
called the translation complement of . Through out this paper, by a collineation we mean a collineation
from the translation complement of 7.

3.1 Collineations corresponding to the Left and middle nuclei

. qr 01, I 01, [ O Mt oo
he mappings a=[o | = Jo ay [ 2= o )= [ 0]

-1
Yy = [M81 (I)] are all collineations of m and the actions of the collineations « , § on the set of i.ps. of =

are furnished below:

a : (0)(81)(1,2,...,10)(11, 12,...,20)(21,22,...,30)(31,32,...,40)
(41 42,...,50)(51,52,...,60)(61,62,...,70)(71,72,...,80)

B : (0)(81)(1,11,6,16)(2,20,7,15)(3,19,8,14)(4,18,9,13)(5,17,10,12)
(21,31,26,36)(22,40,27,35)(23,39,28,34)(24,38,29,33)(25,37,30,32)
(41,51,46,56)(42,60,47,55)((43,59,48,54)(44,58,49,53)(45,57,50,52)
(61,71,66,76)(62,80,67,75)(63,79,68,74)(64,78,69,73)(65,77,70,72)

Also A7 tar= a3 A7BA= Bad, yilay,=a, yiBy;=p, i=12

The actions of the collineations A,y;,y, on the set of i.ps of = are computed and furnished below.

A1 (0)(81)(1,21,12,32,6,26,17,37)(2,24,11,39,7,29,16,34) (3,27,20,36,8,22,15,31)
(4,30,19,33,9,25,14,38) (5,23,18,40,10,28,13,35)(22,60,40,47,27,55,35,42)
(23,51,31,48,28,56,36,43)(41,62,52,71,46,67,57,76) (42,65,51,78,47,70,56,73)
(43,68,60,75,48,63,55,80) (44,61,59,72,49,66,54,77)(45,64,58,79,50,69,53,74)
vi:  (0)(81)(1,2,3,4,5,6,7,8,9,10)(11,20,19,18,17,16,15,14,13,12)

(21,24,27,30,23,26,29,22,25,28) (31,38,35,32,39,36,33,40,37,34)
(41,42,43,44,45,46,47,48,49,50)(51,60,59,58,57,56,55,54,53,52)
(61,64,67,70,63,66,69,62,65,68)(71,78,75,72,79,76,73,80,77,74)

Y2 (0)(81)(1,61,11,71,6,66,16,76)(2,62,12,72,7,67,17,77) (3,63,13,73,8,68,18,78)
(4,64,14,74,9,69,19,79) (5,65,15,75,10,70,20,80)(21,59,39,46,26,54,34,41)
(25,53,33,50, 30,58,38,45)

K.Annapurna, I/SRM volume 4 issue 12 Dec 2016 [www.ijsrm.in] Page 4948



DOI: 10.18535/ijsrm/v4i12.06

M
0
from the action of y, and is given below:

Let y3 = y,°. Now y5 = { } is a collineation of « and its action on the set of i.ps of © follows

vs:  (0)81) (1,11,6,16)(2,12,7,17)(3,13,8,18)(4,14,9,20)(5,15,10,20) (21,32,26,37) (22,33,27,38)
(23,34,28,39) (24,35,29,40) (25,36,30,31)(41,59,46,54) (42,60,47,55) (43,51,48,56) (44,52,49,57)
(45,53,50,58) (61,80,66,75) (62,71,67,76) (63,72,68,77) (64,73,69,78) (65,74,70,79)

Homology groups; [ 9,pp 385]: From the left nucleus of the plane and the collineations a, A it is clear that
<a,A>is the ((«),[0,0] )- homology group H; of 7. From the middle nucleus and the collineations vy, y»
of

<y;,Y, >isthe ((0), [0] )-homology group H;, of m.Both homology groups are meta cyclic groups of order
40.The collineation group < Hy, Hy > =<a,A, ¥4, 2 > divides the set of i.ps of 7 into three orbits 7, i =

1,2,3 of lengths 1, 1, 80 where &4 = {0}, &={81}, & ={i | 1<i <80}

3.2 Conjugacy collineations of the plane

A0
A mapping 6 = {O A} , where A e GL(4,3) induces a conjugation collineation of 7 if AT @A = & . The

set of all conjugation collineations of @ forms a group called the conjugation collineation group, and this
group fixes the ideal points corresponding to V(0),V(), and V(I). Conjugacy collineations of the plane
keeps the left and middle nuclei of & invariant. From Table 1 the matrices M; ,i = 3,5,7,9 are the only
matrices with C.P [1111] and the matrices M; , i = 41,43 are the only matrices with C.P [0121]. So every
collineation either fixes the I.p 41 or flips the i.ps 41,43 while keeping the set of i.ps S={ 3,5,7.9 }
invariant. In order to keep the set of i.ps of S invariant under o the matrix A of 6 belong to the following
sets:

Kl = Z(Mg) M Z(M41) K4 = Z(M3) M T(M41,M43)
Ko=T(M3, Mg) N Z(Ma1) Ks=T(M3, Mg) N T(Ma1,Ms3)
Kz =T (M3,M7) N Z(Ma1) Ks = T(M3, M7) N T(Ma1,Mg3)

The sets Ky, K3, K4, Kg are empty. K; = Z(M3), Ks = T(M3,Mg). No conjugacy collineation maps the i.p 3
onto the i.p 7 and every conjugation collineation either fixes the i.ps 3 and 41 or flips the i.ps 3, 9 and 41,
43,

Also since M, "M, = & each matrix of < induces a conjugacy collineation .Let 81 = yato, 82 = y3 7P,
The mappings 61 and J; are collineations of = since they are product of collineations. < 81, 52 > IS a
subgroup of Gogi 1 and is isomorphic to &

The actions of the conjugation collineations &, , §, on the set of i.ps. of = can be computed from the actions
of a, B8,v1, Y3 and are furnished below:

5.0 (0)(8L)(1)(2)(3)(4)(5)(6)(7)(8)(9)(10)(11,13,15,17,19)(12,14,16,18,20) (21,29,27,25,23)
(22,30,28,26,24) (31,35,39,33,37)(32,36,40,34,38)(41)(42)(43)(44) (45)(46)(47)(48)(49)(50)
(51,53,55,57,59)(52,54,56,58,60) (61,69,67,65,63) (62,70,68,66,64) (71,75,79,73,77)
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(72,76,80,74,78)

8,:  (0)(81)(1)(2,10)(3,9)(4,8)(5,7)(6)(11)(12,20)(13,19)(14,18)(15,17)(16)
(21,23)(22)(24,30)(25,29)(26,28)(27)(31,39)(32,38)(33,37)(34,36)(35)(40)
(41,43)(42)(44,50)(45,49)(46,48)(47)(51,59)(52,58)(53,57)(54,56)(55)(60)
(61)(62,70)(63,69)(64,68)(65,67)(66)(71)(72,80)(73,79)(74,78)(75,77)(76)

From the actions of the collineations §; and &, on the set of i.ps. of = it is clear that the collineation group

< &1, 6, > is transitive on the set of i.ps. {3,9},{11,13,15,17,19}and {12,14,16,18,20}separately.

A O

If &, = [0 p

where

] is a mapping fixing the i.ps. 3 and 11 then the matrix A of &5 belongs Z(M3) N Z(Myy),

a 2d 2d d
d a+d 2d 2d
2d 0 a+d 2d
2d d 0 a+d

Z(M3) N Z(My) =< A(a,d) = | (a,d) # (0,0),a,d €F

If A=A(1,1)% = (0112,2211,1021,1202) then A™*My1 A=Mys , A M4 A=Ma1 , A Me1A=Mgg
If A of & is such that AT @A = & then & induces a collineation of 7 fixing the i.ps 0,81,1if and only if

A'Mai1A, 1 < i <3 belong to distinct left cosets of < Hence A=A(1,1)? induces a conjugation
collineation.

Also all even powers of A(1,1) induce conjugation collineations and the odd powers of A(1,1) do not
induce conjugation collineations. So Gogi.1311 = < 83> where 03= [‘g ,?1] and A=A(1,1)2. &3 is of order
4.

The action of the collineation 65 on the set of i.ps. of = is computed and furnished below:

d3: (0)(B1)(1)(A)(B)(4)(5)(6)(7)(8)(9)(10)(11)(12)(13)(14)(15)(16)(17)(18)(19)(20)(21,26)
(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40) (41)(42)(43) (44)(45)(46)
(47)(48)(49)(50)(51)(52)(53)(54)(55)(56)(57)(58)(59)(60)(61,66)(62,67)(63,68)(64,69)(71,76)
(73,78)(74,79)(75,80).

If &, = (‘3 2) is a mapping fixing the i.p. 3 and mapping the i.p. 11 onto the i.p.12 then the

matrix A of &, belongs to

2c + 2d 2c c d

Z(M3) N T(M11,M12) = A(c, d) = ‘f Cicd gi S |lcder,cd) = (00
2c 0 c+d 2c
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It may be seen that no matrix of this set keeps # invariant under conjugation. From this no matrix of this

set yields a conjugation collineation and thus no conjugation collineation of « which fixes the i.p 3 maps the
i.p 11lonto the i.p 12.

5 .
Gos1,13 = Gog1,1,311U¢ Y Gos1,1311 01 }=<8; 83>
i=
| Gosris| =5 | Gogrisa |=5x4=20

If 85:(
ds5

‘g ,?1) Is a mapping flipping the i.ps 3,9 and mapping the i.p 11 onto the i.p 12 then the matrix A of

belongs to T(M3,Mg) N T(M11,M12). Analysing as in the earlier case no matrix of this set yields a
conjugation collineation. From this we conclude that no conjugation collineation which flips the i.ps 3 and 9
maps the i.p 11 onto the i.p 12.Hence the collineation group Go g1 1 IS transitive on the set of i.ps {3,9} and
{11,13,15,17,19} separately. Now

Gos11 = Gogr13 U Gosr1302 =<981,02, 03>
Since Gp gy 1 Is transitive on {3,9}
| Gogra,| =2 | Gogr1s|=2x20=40

In the above discussion we have seen that the collineation group Gogi13,11 flips the i.ps 21 and 26. If

56 = (‘g 2) is a mapping that fixes the i.ps 0,81,1,3,11 and 21 then the matrix A of 8¢ belongs to

Z(M3) nZ(M11) nZ(M>;).By a straight forward computation we see that A= =I. The mapping &s induces a
scalar collineation which fixes all the i.ps .and

*
Gos1131121=<0s > =F

Thus G 81131121 1s the ((0,0),[oc])- homology group Hs of m and hence gives the kernel of . Thus the kernel
K of Q is isomorphic to F .Hence the kernel of = is trivial.

The collineation group < a, A, y1, v2 > fixes the i.ps 0 and 81 and is transitive on &3

Gog1 = {@Go,sufi } “ {LZ_OJ Gy 1148 } “ {sz Go,smﬂ?/z_légi } “ {sz Go 11725 }Where Siisa

i=1 i=1 i=1
collineation from the collineation group < o,3 > mapping the i.p 1 onto the i.p 1,1 < i < 20 while fixing the
i.ps 0and 81.

Gost = <81, 82,0, B, A v2>=<a, A, 12 | |, y1 > since p =A% and < 81,8, > < <, A, Y1, v2 >
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| Gogs | =80 | Gogur |=80x40=3200

3.3 Translation complement of 7

0 A
A 0

Vo6 =Vsg1, Vg 0 =V, Further

Let = (, ) where A=(1000,0001,0011,0121). It may be seen that 6 : M > A™*M~'4,M € & and

6:M, > Mj,My; > M7, Ay=My > Mag,  A3=My > Mso, Az = Mg - My
For0 < j < 7,1< i < 10wehave
6 Mugj+i > AM, My * 471 Awhereji= [2] k=]~ 2js
= (AT M A(AT M AYAT AL A)
=M Omly (AT A A)
For various values of j; j; takes the values 0,1,2,3. When j = 0 or 1 then j; = 0 and
0 Mg+ » MJYME € @ Whenj=2or3thenj;=1and 6: Mygj+; » Mo VMEM,e € &
since <Mz, My>C M,,. Whenj=40r5, 6 : Myj+i - MICYVME My, € EFsince & < M,,.

Alsowhenj=6o0r7, 6 sendsMjg+; onto M27(i"1)M{‘7M37 € & as Mz, My; € M,,. This shows that 6
permutes the non zero matrices of & among themselves. From this it follows that 6 is a collineation of 7
flipping the i.ps 0,81 and fixing the i,p. 1.

It may be seen that Vo0 =Vg ,Vg10=Vy,V10=V1,V210 =V79,Vu1 0 =V50,Vg1 0 =V37 and

0 a0 =1y ,071p6 = y;1y;. From these relations we get the following:

Viti0 = Vi, where k; = 7i (mod10)
Vi14i 0 = Viggk, where k, = 3i + 6 (mod10)
Vo1+i 0 = Vo4, where k; = 9i + 8 (mod10)
Vi14i 0 = Veyyk, where k, =i+ 5 (mod10)
V147 0 = Vyq g where ks = 7i + 9 (mod10)
V5141 0 = Vo1 4k, where k ¢ = 3i + 3 (mod10)
Vei+i 0= V314, where k, = 9i + 6 (mod10)

V714i 0 = 1121+k4

The action of the collineation 6 on the set of i.ps. of « is now given by
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6 : (0,81)(1)(2,8,10,4)(3,5,9,7)(11,17,15,19)(12,20,14,16)(13)(18)(21,79,24,76) (22,78,23,77)
(25,75,30,80)(26,74,29,71)(27,73,28,72)(31,66,32,67)(35,68,40,65)(34,69,39,64)
(35,70,38,63)(36,61,37,62)(41,50,43,44)(42,47)(45,48,49,46) (51,54,53,60)(52,57)(55,56,59,58)

It may be noted that the collineation group < Gg g1, 8 > divides the set of i.ps. into two orbits ¢ = {0,81}
and

& ={1|1<1i<80}. Further G og; 8 gives the set of all collineations of r that flips the i.ps. 0 and 81.
3.4 Non existence of certain collineations
Lemma 1. (a) No collineation of = maps the i.p. 1 onto the i.p. 81(0) and the i.p.81(0) onto the i.p. 0(81).
(b) No collineation of = maps the i.p. k onto the i.p. 81(0) and the i.p.81(0) onto the i.p. 0(81).
(c) Every collineation that fixes the i.p. 0(81) also fixes the i.p.81(0) i.e.,Go = Gg1 = G g1.

Proof. If m has a collineation which maps the i.p.1 onto the i.p. 81 and the i.p.81 onto the i.p. 0 then by a
Lemma [16,chapter 3] M+M; € % forall M € Z . This condition does not hold since

My; + My =(1001,0111,0101,1002) ¢ & . This shows that no collineation of = maps the i.p. 1 onto the i.p.
81 and the i.p.81 onto the i.p. 0.

If i is a collineation with the following action

Then 671 11 8 maps the i.p. 1 onto the i.p.81 and the i.p. 81 onto the i.p. 0 — a contradiction to the above.
This proves the first part of the lemma.

Let u, () be a collineation mapping the i.p. k onto the i.p.81(0) and the i.p. 81(0) onto the i.p.0(81). Since
G o1 fixes the i.ps. 0 and 81 and is transitive on the remaining i.ps., there exists a collineation T € Gog;
which maps the i.p. 1 onto the i.p. k. Then tu, t-1(7u, 7~1) maps the i.p. 1 onto the i.p. 81(0) and the i.p.
81(0) onto the i.p. 0(81) — a contradiction to the first part of the lemma. We have already seen that wisa A —
plane and Q is a A1 — system with proper kern. By a result of Foulser [6.pp.390] No collineation of  fixes
the i.p. 0 (81) and moves the i.p.81(0) i.e., every collineation of & that fixes the i.p.0 also fixes the i.p.81.

Therefore Gy = Ggi= Gog;1. This proves the last part of the lemma.
Lemma 2 Every Collineation of m either fixes both the i.ps. 0 and 81 or flips them.

Proof. In view of the above lemma no collineation of 7 maps the i.p. k onto the i.p. 0(81) via the i.p.81(0),
k= 0 (k # 81), every collineation of 7 that fixes the i.p.81 also fixes the i.p.0 and vice versa.

Assume that ¢ is a collineation of = mapping the i.ps. 0 and 81 onto any two i.ps. other than 0 and 81.
Using the transitivity of Gog; on the set of i.ps. other than the i.ps.0 and 81 we can take without loss of
generality that & maps the i.p. 0 onto the i.p. 1. This plane & has a collineation 6 which fixes the i.p. 1 and
moves the remaining i.ps. except 6,13,18.

Now in view of lemma [16,chapter 3] no collineation of = moves the i.p. O onto the i.p. 1 and the i.p.81
onto the i.p. k, where k ¢ {6,13,18}. But = has a collineation &, which fixes the i.p. 1 moves both the i.ps.
13 and 18 and again by the same lemma [16,chapter 3] we get that no collineation of = maps the i.p.0 onto
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the i.p. 1 and the i.p.81 onto either the i.p. 13 or the i.p.18.Thus the collineation ¢ must map the i.p.81 onto
the i.p. 6 while mapping the i.p.0 onto the i.p. 1. By a result of Maduram [12,pp 487]. the spread sets #” and
%16x Must be conjugate where k # 1,6 and

gl,G, k= [ Ni = {(MI - MG)-l - ( M1 -Mg )l} - {(Mk— Ms)_l-(Ml-Ms)-1}| M; € g]

i.e., €16 k Isa 3-spread set of m with V1, Vs and V as the fundamental subspaces (y =0, x =0, y = x).It
may be observed that every matrix of % is of det 1 and the spread set Z’16 contains matrices of
determinants 1 and 2. The matrices No, N1 € ©16,0 are of det 1 and Ny is of det 2 (table .2). It now follows
that the spread sets %16 « for any k # 1,6 contains matrices of det 1 and det 2. Thus the spread sets " and
%16 « are not conjugate for any k — a contradiction. From this it follows that no collineation of = maps the
i.p. 0 onto the i.p. 1 and the i.p.81 onto the i.p. 6. Thus no collineation of = moves both the i.ps. 0 and 81
outside the orbit {0, 81}.Therefore every collineation of « either fixes both the i.ps. 0 and 81 or flips them.

Table 2
i Mi- M (Mi-Mg)* Xi= (M= Mg)* = (M; -Mg)* N = XX DetN;
(1000,0100,0010,0001) | (1000,0100,0010,0001) | (2000,0200,0020,0002) (1000,0100,0010,0001) | 1
(2000,0200,0020,0002) | (2000,0200,0020,0002) 0 0 0
(2210,0221,1122,2012) | (2211,1021,1202,2020) | (0211,1121,1212,2021) (0122,2212,2121,1012) | 1
(0201,1120,0112,2211) | (2012,2101,1010,0101) | (0012,2201,1020,0102) (0021,1102,2010,0201) | 2
(2010,0201,1120,0112) | (2101,1010,0101,1110) | (0101,1110,0111,1111) (0202,2220,0222,2222) | 2
(0022,2202,2120,0212 | (2110,0211,1121,1212) | (0110,0011,1101,1210) (0220,0022,2202,2120) | 1
(0000,0000,0000,0000) o0 o0 0 -

Theorem: The translation complement G of the translation plane  is givenby G =< a, 4,y4,¥,,0 >. Itis
of order 6400 and divides the set of i.ps. into two orbits of lengths 2 and 80 where the small orbit consists of
the i.ps. 0 and 81.

Proof: The collineation group < a, 4,y4,v2,6 > is asubgroup of G. If £ is any collineation of m then by the

above lemma 2, ¢ either belongs to Gy g1 or Go, 81 8.

Thusé €<Gpg1,0 >=<a,A,y1,Y2,0 > . ThusG =<a,A,y4,v2,60 > and G divides the set of i.ps. of 7
into two orbits of lengths 2 and 80, where the smaller orbit consists of the i.ps.0 and 81.Since G flips 0 and
81
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|G|=2|Go|=2|Gosi|=2x 3200 = 6400.

Hence the theorem.
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