
  International Journal of scientific research and management (IJSRM)  
 ||Volume||3||Issue||5||Pages|| 2748-2751||2015||  \ 
 Website: www.ijsrm.in ISSN (e): 2321-3418 

 

 

Neha, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in]  Page 2748 

Conversion of Regular Expression in To Finite Automata 

Neha, Abhishek Sharma 

M.Tech,  Assistant Professor 

Department of Cse, Shri Balwant College of Engineering &Technology 

Dcrust University 

 

Abstract - Regular expressions are used to represent certain set of string in algebraic manner. This paper describes a method for 

constructing a minima deterministic finite automaton (DFA) from a regular expression. It is based on a set of graph grammar rules for 

combining many graphs (DFA) to obtain another desired graph (DFA). The graph grammar rules are presented in the form of a parsing 

algorithm that converts a regular expression R into a minimal deterministic finite automaton M such that the language accepted by 

DFA M is same as the language described by regular expression R. The proposed algorithm removes the dependency over the necessity 

of lengthy chain of conversion, that is, regular expression → NFA with ε-transitions → NFA without ε- transitions → DFA → minimal 

DFA. Therefore the main advantage of our minimal DFA construction algorithm is its minimal intermediate memory requirements and 

hence, the reduced time complexity. The proposed algorithm converts a regular expression of size n in to its minimal equivalent DFA in 

O(n.log2n) time. In addition to the above, the time complexity is further shortened to O (n.logen) for n ≥ 75. 

Keywords: DFA, NDFA, RE, Automata, Finite Machine, state, Function  

I. INTRODUCTION 

 
The derivative of a set of strings S with respect to a symbol 

a is the set of strings generated by stripping the leading a 

from the strings in S that start with a. For regular sets of 

strings, i.e., sets defined by regular expressions (REs), the 

derivative is also a regular set. In a 1964 paper, Janusz 

Brzozowski presented an elegant method for directly 

constructing a recognizer from a regular expression based 

on regular-expression derivatives (Brzozowski, 1964). His 

approach is elegant and easily supports extended regular 

expressions; i.e., REs extended with Boolean operations 

such as complement. Unfortunately, RE derivatives have 

been lost in the sands of time, and few computer scientists 

are aware of them.1 Recently, we independently developed 

two scanner generators, one for PLT Scheme and one for 

Standard ML, using RE derivatives. Our experiences with 

this approach have been quite positive: the implementation 

techniques are simple, the generated scanners are usually 

optimal in size, and the extended RE language allows for 

more compact scanner specifications. Of special interest is 

that the implementation techniques are well-suited to 

functional languages that provide good support for 

symbolic term manipulation (e.g., inductive data types and 

pattern matching). The purpose of this paper is largely 

educational. Our positive experience with RE derivatives 

leads us to believe that they deserve the attention of the 

current generation of functional programmers, especially    

 

those implementing RE recognizers. We begin with a 

review of background material in Section 2, introducing the 

notation and definitions of regular expressions and their 

recognizers. Section 3 gives a fresh presentation of 

Brzozowski’s work, including DFA construction with RE 

derivatives. 

 
A. Preliminaries 

 
 We assume a finite alphabet Σ of symbols and use Σ ∗ to 

denote the set of all finite strings over Σ. We use a, b, c, 

etc., to represent symbols and u, v, w to represent strings. 

The empty string is denoted by ε. A language of Σ is a 

(possibly infinite) set of finite strings L ⊆ Σ ∗ . 

 
II. Regular expressions 

 
 Our syntax for regular expressions includes the usual 

operations: concatenation, Kleene closure, and alternation. 

In addition, we include the empty set (∅) and the Boolean 

operations “and” and “complement.”2 

 

Definition 2.1  
The abstract syntax of a regular expression over an 

alphabet Σ is given by the following grammar: r, s ::= ∅ 

empty set | ε empty string | a a ∈ Σ | r · s concatenation | r ∗  

Kleene-closure | r + s logical or (alternation) | r & s logical 

and | ¬r complement These expressions are often called 

extended regular expressions, but since the extensions are 

conservative (i.e., regular languages are closed under 

Boolean operations (Rabin & Scott, 1959)), we refer to 

them as regular expressions. Adding boolean operations to 

the syntax of regular expressions greatly enhances their 

expressiveness, as we demonstrate in Section 5.1. We use 

juxtaposition for concatenation and we add parentheses, as 

necessary, to resolve ambiguities. The regular languages 

are those languages that can be described by regular 

expressions according to the following definition. 

 
 



Neha, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2749 

A. Finite state machines 
 Finite state machines (or finite automata) provide a 

computational model for implementing recognizers for 

regular languages. For this paper, we are interested in 

deterministic automata, which are defined as follows: 

  
Definition 2.2  
 
A deterministic finite automaton (DFA) over an alphabet Σ 

is 4-tuple hQ, q0, F, δi, where Q is a finite set of states, q0 

∈ Q is the distinguised start state, F ⊆ Q is a set of final (or 

accepting) states, and δ : Q × Σ → Q is a partial function 

called the state transition function. We can extend the 

transition function δ to strings of symbols ˆδ(q, ε) = q ˆδ(q, 

au) = ˆδ(q 0 , u) when q 0 = δ(q, a) is defined The language 

accepted by a DFA is defined to be the set of strings {u | 

ˆδ(q0, u) ∈ F} 

 
B. Regular expression derivatives 

 
 In this section, we introduce RE derivatives and show how 

they can be used to construct DFAs directly from Res . 3.1 

Derivatives The notion of a derivative applies to any 

language. Intuitively, the derivative of a language L ⊆ Σ ∗ 

with respect to a symbol a ∈ Σ is the language that includes 

only those suffixes of strings with a leading symbol a in L. 

 

C. Regular Expression 

A regular expression (RE) is a pattern that describes some 

set of strings. Regular expression over a language can be 

defined as:  

  

1) Regular expression for each alphabet will be 

represented by itself. The empty string (ϵ) and null 

language (ϕ) are regular expression denoting the 

language {ϵ} and {ϕ} respectively.  

 

2) If E and F are regular expressions denoting the 

languages L (E) and L (F) respectively, then 

following rules can be applied recursively. 

 

a. Union of E and F will be denoted 

by regular expression E+F and 

representing language L (E) U L 

(F).  

 

b. Concatenation of E and F denoted 

by EF and representing language L 

(E*F) = L (E) * L (F).  

 

c. Kleene closure will be denoted by 

E* and represent language (L (E))*.  

 

3) Any regular expression can be formed using 1-2 

rules only.  

 

 

III. Conversion of RE to FA 
 

 

It turns out that every Regular Expression has an equivalent 

NFA and vice versa. There are multiple ways to translate 

RE into equivalent NFA’s but there are two main and most 

popular approaches. The first approach and the one that 

will be used during this thesis is the Thompson algorithm 

and the other one is McNaughton and Yamada’s algorithm.  

 

A. Thompson’s algorithm 

Thompson algorithm was first described by Thompson in 

his CACM paper in 1968. Thompson’s algorithm parse the 

input string (RE) using the bottom-up method, and 

construct the equivalent NFA. The final NFA is built from 

partial NFA’s, it means that the RE is divided in several 

sub expressions, in our case every regular expression is 

shown by a common tree, and every subexpression is a sub 

tree in the main common tree. Based on the operator the 

sub tree is constructed differently which results on a 

different partial NFA construction.  

 

B.  McNaughton and Yamada Algorithm 
The idea of the McNaughton and Yamada algorithm is that 

it makes diagrams for sub expressions in a recursive way 

and then puts them together. According to Store  and 

Chang [9] the McNaughton and Yamada’s NFA has a 

distinct state for every character in RE except the initial 

state. We can say that McNaughton and Yamada’s 

automaton can also be viewed as a NFA transformed from 

Thompson’s NFA. 

 

 

IV. Problem Statement 
 

Regular expressions, also known as regex, are 

commonplace in computing. They are generally used for 

matching or replacing strings of text, such as when 

searching documents for words, filtering email for spam, or 

searching the web. They feature in most major 

programming languages and are central to the working of 

parsers such as Lex. More formally, they can define a class 

of languages known as regular languages. For regular 

expressions to be usable by computers they are converted 

to various types of finite automata. It is this process of 

conversion that we will investigate here. The types of finite 

automata we will deal with are: 

 

▪ DFA (deterministic finite automata) 

▪ NFA (nondeterministic finite automata) 

▪ GNFA (general nondeterministic finite automata) 

The steps we will perform to create them are: 

 

▪ Conversion of regular expression to NFA 

▪ Conversion of NFA to DFA 

▪ Conversion of DFA to minimal DFA 

▪ Conversion of DFA to regular expressions 



Neha, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2750 

This last step is to demonstrate that our implementation of 

the algorithms is correct – if the final regular expression 

describes the same language as the first in each test 

instance it will be a strong indicator of success. 

 

It became clear early in the investigation that the most 

sensible method to reach our goal was to use the following: 

 

▪ Thompson's Algorithm 

▪ Subset Construction 

▪ DFA minimisation by removal of dead, inaccessible and 

redundant states from DFA 

▪ Conversion of DFA to GNFA and removal of states from 

GNFA 

 
V. Implementation 

 

The source code for a Java applet that, upon the user 

entering a regular expression can perform the following: 

 

▪ Convert regular expression to NFA 

▪ Convert NFA to DFA 

▪ Minimise DFA 

▪ Convert DFA back to regular expression via GNFA 

A. Classes 

The applet consists of six classes. Mostly they were 

straightforward to implement. 

1. RegexAutomaton.class (The main class) 

It creates the GUI, deals with input and creates any Regex 

objects as required which it then adds to its database. 

2. Regex.class (An individual regex) 

It contains the terms for the original regular expression, 

trees of Node objects for the NFA, DFA and minimised 

DFA, a two dimensional array representing the GNFA, and 

the terms for the final regular expression. It also contains 

the algorithms for converting one to another. 

3. Node.class (An abstract parent class of the NfaNode 

and DfaNode classes) 

It contains the basic commonality of Nodes – node number, 

indicators of initial and final states. 

4. DfaNode.class (A subclass of the Node class)  

It implements a DFA node. In addition to the sections 

inherited from its parent class it contains a vector for 

DfaNodes moved to from this DfaNode and functions to 

iterate through DfaNodes. 

5. NfaNode.class (A subclass of the Node class) 

It is similar to the DfaNode class but with the different 

transition table according to NFA requirements. 

6. IllegalRegexTermsException.class 

An exception class thrown when illegal regular expression 

terms are provided to the application, e.g. two pipes in a 

row, a regex that starts with a closing bracket, and so on. 

B. Functions 

The key functions used in above classes are explained 

below: 

1. GetStatement () – This function takes care of most of 

the parsing. It checks for symbols or sequences of symbols. 

The various combinations of symbols it looks for are 

clearly commented in the code. Each term is converted to 

an NfaNode object, or a number of NfaNode objects, and is 

linked to the NfaNode objects created so far. 

2. DoUnion () - If getStatement () function encounters a  

union it parses the left hand part itself and then calls this 

function to deal with the right hand side of the union. 

3. ConvertNFAtoDFA () – It converts the graph of 

NfaNode objects to a graph of DfaNode objects. 

4. MinimiseDFA () – It copies the graph of DfaNode 

objects and minimises it. 

5. ConvertDFAtoRegex () – It converts the minimised 

graph of DfaNode objects back to a regex by creating and 

minimizing a GNFA in the form of a two dimensional 

array of String objects. 

6. MakeCell () – applies Arden’s rule to the GNFA matrix 

cells to minimize the GNFA 

 

 

VI. Result 
 

Regular expression to deterministic finite automata and 

vice versa using heuristics proposed by various researchers. 

Software for conversion has been developed in java. After 

execution of software the GUI screen of java applet is 

displayed. The screen consists of multiple elements with 

which users can interact with the software as shown in 

figure 6.1. The components that are displayed on the user 

interface are listed below: 

 

▪ JLabel: A Label is a graphical control that is used to 

display any specific text on the applet window. The text 

(caption) displayed by the label control is not directly 

modifiable. Normally label control is placed before input 

and output box for representing I-O message.  



Neha, IJSRM volume 3 issue 5 May 2015 [www.ijsrm.in] Page 2751 

▪ JTextField: Like label, it is also a Graphical control that 

is used to display any specific text on the form window. 

But we can perform modification of this text directly. 

Therefore, Text box control can be used for accepting input 

& displaying output. 

▪ JButton: It is most widely used control on the user 

interface. A user can initiate action on this control by 

clicking on it. A caption is specified on button to represent 

type of action to be performed.  

▪ JScrollPane: A scroll pane is a component that presents a 

rectangular area in which a component may be viewed. 

Horizontal & Vertical scroll bars may be provided if 

necessary. The scroll panes are implemented by 

JScrollPane class. 

▪ JTextArea: The JTextArea component is used for 

displaying or entering multiple lines text. The user can 

enter any number of lines of text, using the enter key to 

separate them 

 
 Conclusion 

 
Researching this paper has shown that the conversion of 

regular expressions to DFA and back again are processes 

that are well understood and are implementable without 

any great difficulty. The most time-consuming part of the 

project was coding the parser for the regular expression. 

This is because while regular expressions define regular 

languages, they themselves are not regular and must be 

described by context-free grammars.  

References 

[1] Alfred V. Aho, “Constructing a Regular Expression from a DFA”, 
Lecture notes in Computer Science Theory, September 27, 2010, 

Available at http://www.cs.columbia.edu/~aho/cs3261/lectures.  

 
[2] Ding-Shu Du and Ker-I Ko, “Problem Solving in Automata, 

Languages, and Complexity”, John Wiley & Sons, New York, NY, 2001.  

 
[3] Gelade, W., Neven, F., “Succinctness of the complement and 

intersection of regular expressions”, Symposium on Theoretical Aspects 

of Computer Science. Dagstuhl Seminar Proceedings, vol. 08001, pages 
325–336. IBFI (2008).  

 

[4] Gruber H. and Gulan, S. (2009), “Simplifying regular expressions: A 
quantitative perspective”, IFIG Research Report 0904.  

 

[5] Gruber H. and Holzer, M., ”Provably shorter regular expressions from 
deterministic finite automata”, LNCS, vol. 5257, pages 383–395. 

Springer, Heidelberg (2008).  

 
[6] Gulan, S. and Fernau H., “Local elimination-strategies in automata for 

shorter regular expressions”, In Proceedings of SOFSEM 2008, pages 46–

57 (2008).  
 

[7] H. Gruber and M. Holzer, “Finite automata, digraph connectivity, and 

regular expression size”, In Proceedings of the 35th International 
Colloquium on Automata, Languages and Programming, Iceland, July 

2008. Springer.  

 
[8] H. Gruber and J. Johannsen, “Optimal lower bounds on regular 

expression size using communication complexity”, In Proceedings of the 

11th International Conference Foundations of Software Science and 
Computation Structures, volume 4962 of LNCS, pages 273–286, 

Budapest, Hungary, March–April 2008. Springer.  
 

[9] J. J. Morais, N. Moreira, and R. Reis, “Acyclic automata with easy-to-

find short regular expressions”, In 10th Conference on Implementation 
and Application of Automata, volume 3845 of LNCS, pages 349–350, 

France, June 2005. Springer.  

 
[10] K. Ellul, B. Krawetz, J. Shallit, and M.Wang, “Regular expressions: 

New results and open problems”, Journal of Automata, Languages and 

Combinatorics, 10(4):pages 407– 437, 2005.  
 

[11] Larkin, H., “Object oriented regular expressions”, 8th IEEE 

International Conference on Computer and Information Technology , vol., 
no., pages 491-496,8-11 July,2008  

 

[12] Peter Linz, Formal Languages and Automata (Fourth Edition), Jones 
and Bartlett Publishers, 2006 

 

[13] Michael Sipser, Introduction to the Theory of Computation, Thomson 
Course Technology, 2006 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


