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Abstract 

In this paper we represent a fuzzy algebra of standard basis, using fuzzy matrix. Any finitely generated 

subspace are fuzzy algebra (£) has a unique standard basis and have the same cardinality, and the 

standardbasis can be uniquely expressed as a linear combination of the standard basis vector, and also we 

have to compute the standard fuzzy linear combination of the basis vector (0.5, 0.5, 0.5) in terms of the 

standard basis and also we derived fuzzy automata using relations. 

 Keywords: Fuzzy matrix, Fuzzy Algebra, Standard Basis. 

Standard Basis 

Definition: 1.1 

A basis C over the fuzzy algebra £ is a standard basis iff whenever  

   = ∑       for all        ϵ C and     ϵ £ 

Then               . 

Theorem: 1.1.1 

The fuzzy algebra £ = [0,1] any two bases for a finitely generated subspace have the same 

cardinality. Any finitely generated subspace over £ has a unique standard basis. 

Proof: 

(i).First we show that for any finite basis c, there exists a  

standard basis having the same cardinality. 

Let s be the set of all fuzzy vectors each of whose entries equals some entry of a vector of c, then s is 

a finite set. 

Suppose c is not a standard basis then 

   = ∑      for some      ϵ C   and      ϵ £ = [0,1]                                 with    ≠      . 

ie,   i ≠ min {   ,c}    

           ˂    

Let    be the set obtained from c by replacing    by      . 

Then , 
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| c | = |   |  and  ˂ c ˃ = ˂   ˃ 

It can be verified that    is independent set and all vector of   ϵ s. 

We define,   

   ≤    for finite subsets    and    of s. 

If,  weight of    ≤  weight of   . 

Clearly, this is a partial order relation on finite subsets of s. 

Since, aij ci < ci,     c1 ≤ c  and  |c1| = |c|  is finite. 

If    is a standard basis, then    is the required standard basis with the same cardinality C. 

If not then repeat the process of replacing    by a basis    and proceed. 

Therefore after replacing bases of the form c by bases of the form   . 

This can happen only if we have obtained a standard basis with the same cardinality c. 

   (ii).Let c be a standard basis, 

Suppose,    

   ϵ c, 

We have,    ∑     

 Where     ϵ ˂ c ˃, then   can be expressed as a linear combination of basis  vector in c. 

ie.     = ∑     ,      ϵ £  and    ϵ C. 

        = ∑     = ∑          = ∑   ∑       ) 

Since c is standard basis. 

By definition, 

We have  (∑         =   . The fuzzy series is maximum, 

          for some j,  

From,      ∑      

We get,         . 

From,      ∑    

We get,         for some j. 

Thus we conclude that whenever    equals some summand     

Next to prove the uniqueness, 

If possible, 

Let as assume that c and    are two standard basis with | c | = |   |. 
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Since,    is a basis, each element of c can be expressed as a linear combination of     

By the proceeding argument, each element    of c must be multiple of some element of    of    . 

Since fuzzy multiplication is minimum, it follows that         

In the same manner, by using that each element of   is a multiple of some element of c and | c | = | 

  |. 

It follows that       

Hence proved the uniqueness of the standard basis. 

Definition: 1.2 

The dimension of the finitely generated subspace s of a vector space    over £, denoted by dim(s). It 

is defined to be the cardinality of the standard basis of s. 

Example: 1 

Let s={(1,0,0),(0,1,0),(0,0,1)} be the set of a vector space    over the fuzzy algebra £. 

It form the standard basis for   , 

dim(    = 3 

Example: 2 

  Let s={(0.5,0.5,0.5),(0,1,0.5),(0,0.5,1)} be a standard basis of  v3 over the fuzzy algebra £. 

The subspace of v3 generated by s is w = ˂ s ˃. 

W= {(x, y ,z) /0 ≤ x ≤ 0.5 ≤ y, z≤ 1}U {(x, y, z) /0 ≤ x ≤ y = z ≤ 0.5} 

     dim(w) = 3 

˂ s ˃ = 3 

ie.   dim(w) = | s | = 3. 

 

 

Remark: 1 

For vector spaces over a field  

dim (s) = dim (w)  iff  s=w 

Let s ={ (1,0,0), (0,1,0), (0,0,1)} be  the set form the standard basis for v3. 

ie.    dim (v3) = 3               ………………… (1) 

Let w = {(x,y,z) / 0 ≤ x ≤ 0.5 ≤ y, z ≤ 1} U {(x,y,z) / 0 ≤ x ≤ y = z = 0.5} 

And s = {(0.5,0.5,0.5), (0,1,0.5), (0,0.5,1)} be a standard basis for v3. 

ie.     dim (w) = 3               …………………. (2) 

from (1) and (2), 
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dim (v3) = dim (w) = 3.  But  w ≠ v3. 

Theorem: 1.1.2 

Let s be a finitely generated subspace of vn and let { c1,c2,c3,…….cn} be the standard basis for s, then 

any vector x ϵ s can be expressed uniquely as a linear combination of the standard basis vectors. 

Proof: 

Let s be a finitely generated subspace of vn and let { c1,c2,….cn} be the standard basis for s. 

x is a linear combination of the standard basis vectors. 

x = β1c1+ β2c2 +……….+ βncn 

x = ∑     
 
    

where,  βj ϵ £ 

The coefficient of βj
’
s are not unique. If we write this in the matrix form as  

x = ( β1, β2,……, βn).c 

where, c is the matrix whose rows are the basis vectors. 

Then, x = p.c has a solution (β1, β2,……….., βn) 

By the theorem,  

  “For the equation xA = b, Ω (A1b) ≠ Ф iff   ̂ = [  ̂ / j ϵ Nm ] defined as 

 ̂j = min σ( ajk ,bk),  (ajk.bk) = {  
                

                 
    is the maximum solution of the equation x.A =b”. 

It follows that this equation has a unique maximal solution (p1,p2,p3,…….,pn ) 

Then, x = ∑     
 
    with     ϵ £   is the unique representation of the vector x. 

Hence Proved. 

Theorem: 1.1.3 

   Let s be a vector space over £ and be the linear span of the vectors  

x1, x2, x3,….xm. If some xi is a linear combination of x1, x2,…, xi-1, xi+1,…., xm then the vectors x1, x2,….., xi-

1, xi+1,….., xm  also spans s. 

Proof: 

Let w = {x1, x2,……,xm} 

such that,   s = < w >    

Since, xi is a linear combination of x1, x2,…..,xi-1, xi+1,…..xm  there exists βj
’
s for i=1,2,3……m and j 

≠ i ϵ £. 

such that,  

     xj =∑   
 
   
   

  . 
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 Since s = < w >, any vector y ϵ s can be expressed as 

y = ∝1 x1 + ∝2 x2 +…….+ ∝i-1 xi-1 +∝i+1 xi+1 +…..+∝n xm  

    = ∑ ∝ 

    
   j xj + ∝ixi 

     = ∑ ∝ 

     
   j xj + ∝i(∑   

 
   
   

  )   

    =  ∑ ∝ 
 

    
      + ∑ ∝ 

 

    
        

    = ∑  ∝    ∝  
 

    
      

y =  ∑   
 

    
      

where, 

γj = ∝j +βj ∝j  for j=1,2,…..m and  j≠i  are elements in £. 

Since y is arbitrary vector in s. 

We have, s = < w / {xi} > 

Thus the vectors x1, x2,……,xi-1,xi+1,…..xm spans s. 

Hence the theorem. 

Theorem: 1.1.4 

Let s be a vector space over £ of dimension n and let x1, x2, …..,xm be linearly independent vectors in 

s. Then there exist a basis for s containing    

x1, x2, …….., xm. 

Proof: 

Let s be a vector space over £ of dimension n and  

Let x1, x2,….., xm be linearly independent vectors in s. 

Let y1, y2, ………., yn be unique standard basis for s. 

Then the set w = {x1, x2,……., xm, y1, y2,……yn} is linearly dependent subset of s. 

Therefore yi for some < s > = s, and 

Thus s is a linear span of w. 

By the theorem, 

s = < w / { yi } > is also spans s. 

If the set is linearly independent set and basis for s. 

Otherwise we continue the process until we get a basis containing x1, x2,…, xm. 

     Hence proved. 
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Remark: 2 

The image of the zero linear transformation under the mapping   T→ [T] is the zero matrix, all whose 

entries are zero. 

 

 

Remark: 3 

In particular for the identity transformation on w. since I(ci) = ci for each basis vector ci in the 

standard basis β = { c1, c2,….., cn} of w. 

Example: 3 

Let w be the subspace. Compute the standard fuzzy linear combination of the basis vector (0.5, 0.5, 

0.5) in terms of the standard basis      

B = { (0.5, 0.5, 0.5), (0, 1, 0.5), (0, 0.5, 1) of the subspace w of v3 generated by B the identity mapping   I : 

w → w 

Since I(x) = x for  x ϵ w, the standard fuzzy linear combination of the standard basis vector (0.5, 0.5, 

0.5) is  

  (0.5, 0.5, 0.5) = 1(0.5, 0.5, 0.5) + 0.5(0, 1, 0.5) +0.5(0, 0.5, 1)  

Let the standard fuzzy linear combination of the basis vector 

ci =  ̂1 c1 + ̂2 c2 +…….+  ̂n cn 

Let (0.5, 0.5, 0.5) =  ̂1 (0.5, 0.5, 0.5) +  ̂2 (0, 1, 0.5) +  ̂3 (0, 0.5, 1) 

Where,  

A= [
         
     
     

]; 

x = ( ̂1,  ̂2,  ̂3),   b = (0.5, 0.5, 0.5) 

The fuzzy relational equation x.A = b 

= ( ̂1,  ̂2,  ̂3)[
         
     
     

] 

Here,  

b1 = b2 = b3 = 0.5  

a11 = a12 = a13 = a23 = a32 = 0.5 

a21 = a31 = 0   and 

a22 = a33 = 1 

Find the minimum solution x = ( ̂1,  ̂2,  ̂3) 

By the theorem, 
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      ̂j = 
   
   

  σ(   ,  ) 

Where,  

σ (   ,   ) = {  
                   

                    
 

 ̂j = 
   
   

  σ(    ,   )  for i = 1,  j = 1, 2, 3    kϵК 

For j = 1 

 ̂1  =  
   
   

 σ(ajk, bk) 

= min {σ(a1k, bk)} 

= min {σ(a11,b1), σ(a12, b2), σ(a13,b3)} 

= min {σ(0.5,0.5), σ(0.5,0.5), σ(0.5,0.5)} 

= min {1, 1, 1} 

= 1 

 ̂1 = 1 

For j =2 

 ̂2  = 
   
   

  σ(ajk, bk) 

= min {σ(a2k, bk)}  

= min {σ(a21, b1), σ(a22, b2), σ(a23, b3)} 

= min {σ(0,0.5), σ(1,0.5), σ(0.5, 0.5)} 

= min {1,0.5,1} 

= 0.5 

 ̂2  = 0.5 

For j =3 

 ̂3   =  
   
   

  σ(ajk, bk) 

= min {σ(a3k, bk)} 

= min {σ(a31, b1), σ(a32, b2), σ(a33, b3)} 

    = min {σ(0,0.5), σ(0.5,0.5), σ(1,0.5)} 

= min {1,1,0.5} 

= 0.5    

 ̂3 = 0.5 

Thus    x = ( ̂1,  ̂2,  ̂3) = ( 1, 0.5, 0.5) 
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Hence, 

(0.5, 0.5, 0.5) =  ̂1(0.5, 0.5, 0.5) +  ̂2( 0, 1, 0.5) +  ̂3( 0, 0.5, 1) 

  =  1(0.5, 0.5, 0.5) + 0.5( 0,1, 0.5) + 0.5(0, 0.5,1) 

is the standard fuzzy linear combination of basis vectors. 

Next, 

    (0, 1, 0.5) = b 

b1 = 0, b2 = 1, b3 =0.5 

a11 = a12 = a13 = a23 = a32 = 0.5 

a21 = a31 = 0    and   a22 = a33 =1 

For j = 1 

 ̂1  =  
   
   

  σ( ajk, bk ) 

= min {σ(a1k, bk)} 

= min {σ(a11, b1), σ(a12, b2), σ(a13, b3)} 

= min {σ(0.5, 0), σ(1,1), σ(1,0.5)} 

= min {0,1,0.5} 

= 0 

 ̂1 = 0 

For  j = 2 

 ̂2 =  
   
   

  σ(ajk, bk) 

= min {σ(a2k, bk)} 

= min {σ(a21, b1), σ(a22, b2), σ(a23, b3)} 

= min {σ(0,0), σ(1,1), σ(0.5,0.5)} 

= min {1,1,0.5} 

= 0.5 

 ̂2 = 0.5 
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For j = 3 

 ̂3 =  
   
   

  σ(ajk, bk) 

= min {σ(a3k, bk)} 

= min {σ(a31,b1), σ(a32,b2), σ(a33,b3)} 

= min {σ(0,0), σ(0.5,1), σ(1,0.5)} 

= min {0,0.5,0.5} 

= 0.5 

     ̂3 = 0.5 

Thus    x = (  ̂1,  ̂2,  ̂3 ) = ( 0,1,0.5) 

Hence, 

 (0,1,0.5) = 0(0.5,0.5,0.5) + 1(0,1,0.5) + 0.5(0,0.5,1) is the standard fuzzy linear combination of basis 

vectors. 

Next, 

b = ( 0, 0.5, 1) 

b1 = 0,  b2 = 0.5,  b3 = 1 

For j = 1 

 ̂1 = 
   
   

  σ(ajk, bk) 

= min {σ(a1k, bk)} 

= min {σ(a11, b1), σ(a12, b2), σ(a13, b3)} 

= min {σ(0.5,0), σ(0.5,0.5), σ(0.5,1)} 

= min {0,0.5,0.5} 

= 0 

 ̂1 = 0 

For j = 2 
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 ̂2 = 
   
   

  σ(ajk, bk) 

= min {σ(a2k, bk)} 

= min {σ(a21,b1), σ(a22, b2), σ(a23, b3)} 

= min {σ(0,0), σ(1,0.5), σ(0.5,1)} 

= min {1,0.5,1} 

= 0.5 

 ̂  = 0.5 

For j = 3 

 ̂3 =  
   
   

σ(ajk, bk) 

=  min {σ(a3k, bk)} 

= min {σ(a31,b1), σ(a32, b2), σ(a33, b3)} 

= min {σ(0,0), σ(0.5,0.5), σ(1,1)} 

= min {1,1,1} 

= 1 

 ̂3 = 1 

Thus, 

x = (  ̂1, ̂2, ̂3) = (0,0.5,1) 

(0, 0.5,1) =  ̂1(0.5,0.5,0.5) +  ̂2(0,1,0.5) +  ̂3(0,0.5,1) 

     = 0(0.5,0.5,0.5) + 0.5(0,1,0.5) + 1(0,0.5,1) 

is the standard fuzzy linear combination of basis vectors. 

Similarly, 

The standard fuzzy linear combination of the other basis vectors are 

  (0,1,0.5) = 0(0.5,0.5,0.5) + 1(0,1,0.5) + 0.5(0,0.5,1) 

   (0,0.5,1) = 0(0.5,0.5,0.5) + 0.5(0,1,0.5) + 1(0,0.5,1) 
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Hence, 

The matrix  [I] corresponding to the identity linear transformation with respect to the standard basis β 

= {(0.5,0.5,0.5), (0,1,0.5), (0,0.5,1)} is  

[I]β= [
   
       
       

] 

Hence solved. 

 

 

Theorem: 1.1.5 

If  β
’
 is the standard basis of w obtained from β = { c1, c2,….., cn} by the basis vectors in β, then for 

any linear transformation T on w, [T]β
’
 are similar matrixes in £n. 

Proof: 

Let β = { c1, c2,….cn} be the standard basis vector and 

β
’
 = { cσ(1), cσ(2),…..cσ(n)} be the standard basis of w for some permutation σ on  s = {1,2,…..,n}. 

Let, 

[T]β = [∝j]  and  

[T]β
’
 = [γσ(i),σ(j)] 

T(cj) = ∑ ∝ ij.cj                              ………… (1)  

and     T(cσ(j)) = ∑   σ(i),σ(j) cσ(i)            ................ (2) 

For any  j ∈ s, 

T(ck) = ∑ ∝ ik ci                           ………… (3) 

T(cσ(j)) = T(ck) = ∑   σ(i)k. cσ(i)      .................(4) 

From,  T(ck) = ∑   σ(i)k . ck is the standard fuzzy linear combination of T(ck). 

Since, the coefficients ∝ik
’
s are uniquely determined by T(ck). 

The coefficients   γrk = ∝ik for σ(i)=r. 
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Hence, the coefficients γσ(i)k
’
s i =1,2,…..n are the rearrangement according to σ of the coefficients 

a1k, a2k,….., ank. 

Thus, 

The entries of the j
th

 column of  [T]β
’
[T]β  permuted according to σ. 

Since,  jϵs is arbitrary each column of [T]β
’
 is obtained by permuting suitably the entries of some 

other column of  [T]β
’
. 

Hence, 

[T]β
’
 = P

T 
[T]β P. 

Where, 

P is the permutation matrix corresponding to the permutation σ on s. 

Since, the permutation matrices are invertible in  n. 

∴ [T]β
’
  and  [T]βare similar matrix. 

Hence proved. 

                 

Fuzzy Automata 

Introduction:  

A finite state machine (or) sequential machine is a dynamic system operating in discrete time that 

transforms sequence of input states (stimuli) received at the input of the system to sequence of output states 

(responses) produced at the output of the system. 

The sequences may be finite (or) countably infinite. The transformation is accomplished by the 

concept of a dynamically changing internal state. 

At each time, the response of the system is determined on the basis of the received stimulus and the 

internal state of the system. At the same time, a new internal state is determined, which replaces its 

predecessor. 

  The new internal state is stored in the system to used subsequently. A finite state machine (or) finite 

automation is called fuzzy automata, when its states are characterized by fuzzy sets, the production of 

response and next states is facilitated by suitable fuzzy relations. 

Definition: 1.3 
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A finite fuzzy automata A is a fuzzy relational system defined by the quintuple  

A = < X, Y, Z, R, S > 

Where, 

X is a non-empty finite set of input states (stimuli) 

Y is a non-empty finite set of output states (responses) 

Z is a non-empty finite set of internal states 

R is a fuzzy relation on X×Y (response relation) 

S is a fuzzy relation on X×Y×Z (state transformation relation) 

Problem: 1 

Consider a fuzzy automaton with  X = {x1, x2}, 

Y = {y1, y2, y3},     Z = {z1, z2, z3, z4}  whose output relation. 

   

  y1 y2 y3 

 z1 1 0 0 

 

R = 

z2 0 1 0 

z3 0 0 1 

 z4 0.5 1 0.3 

 

 

State transition relation δ are defined by the following matrices respectively for the input states x1 

and x2. 

  z1 z 2  z 3 z 4 

 z1 0 0.4 0.2 1 

 

δA1(zi,zj) =  

z2 0.3 1 0 0.2 

z3 0.5 0 0 1 

 z4 0 0 0 1 
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  Z1 Z2 Z3 Z4 

 Z1 0 0 1 0 

δA2(zi,zj) =  Z2 0.2 0 0 1 

 Z3 0 0 0 1 

 Z4 1 0.3 0 0.6 

 

Generate sequences of two fuzzy internal states and output states under the following conditions, 

(i). The initial fuzzy state is c1 = [1  0.8  0.6  0.4] 

The input fuzzy states are, 

A1 = [1  0.4],     A2 = [0  1] 

Solution: 

Let us assume that the initial state of the automaton is c1 = [1 0.8  0.6  0.4] and its fuzzy input states 

is A1 = [1  0.4]  are given , 

We know that the equation, 

δAt (zi,zj) = 
   

        [min(At(xk),δk(zi,zj)] 

 Let us compute the 4×us compute the 4×4 matrix Δa1 

δA1(z1,z1) = max {min[A1(x1),δx1(z1,z1)], min[A2(x2),δx2(z1,z1) 

= max {min(1,0),min(0.4,) 

= max (0,0) 

= 0 

δA1(z1,z2) = max {min(1,0.4),min(0.4,0)} 

= max (0.4,0) 

= 0.4 

δA1(z1,z3) = max {min[A1(x1),δx1(z1,z3)], min[A1(x2),δx2(z1,z3)]} 

δA1(z1,z4) = max {min[A1(x1),δx1(z1,z4)], min[A1(x2),δx2(z1,z4)]} 

= max {min(1,1), min(0.4,0)} 

= max (1,0) 
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= 1 

Thus the first row of δA1 is [0  0.4  0.4  1] 

δA1(z2,z1) = max {min[A1(x1),δx1(z2,z1)], min[A1(x2),δx2(z2,z1)]} 

= max {min(1,0.3), min(0.4,0.2)} 

= max (0.3,0.2) 

= 0.3 

δA1(z2,z2) = max {min[A1(x1),δA1(z2,z2)], min[A1(x1),δA2(z2,z2)]} 

= max {min(1,1), min(0.4,0)} 

= max (1,0) 

= 1 

δA1(z2,z3) = max {min[A1(x1),δA1(z2,z3)], min[A1(x2),δA2(z2,z3)]} 

= max {min(1,0), min(0.4,0)} 

= max (0,0) 

= 0 

δA1(z2,z4) = max {min[A1(x1),δA1(z2,z4)], min[A1(x2),δA2(z2,z4)]} 

= max {min(1,0.2), min(0.4,1)} 

= max (0.2, 0.4) 

= 0.4 

Thus the second row δA1 is [0.3  1  0  0.4] 

δA1(z3,z1) = max {min[A1(x1),δA1(z3,z1)], min[A1(x2),δA2(z3,z1)]} 

= max {min(1, 0.5), min(0.4, 0)} 

= max (0.5, 0) 

= 0.5 

δA1(z3,z2) = max {min[A1(x1),δA1(z3,z2)], min[A1(x2),δA2(z3,z2)]} 

= max {min(1,0), min(0.4, 0)] 
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= max (0,0) 

= 0 

δA1(z3,z3) = max {min[A1(x1),δA1(z3z3)], min[A1(x2),δA2(z3,z3)]} 

= max {min(1,0), min(0.4,0)} 

= max (0,0) 

= 0 

δA1(z3,z4) = max {min[A1(x1),δA1(z3,z4)], min[A2(x2),δA2(z3,z4)]} 

= max {min(1,1), min(0.4,1)} 

= 1 

Thus the third row of δA1 is [ 0.5  0  0  1] 

δA1(z4,z1) = max {min[A1(x1),δA1(z4,z1)], min[A1(x2),δA2(z4,z1)]} 

= max {min(1,0), min(0.4,1)} 

= max (0, 0.4) 

= 0.4 

δA1(z4,z2) = max {min[A1(x1),δA1(z4,z2)], min[A1(x1),δA2(z4,z2)]} 

= max {min(1, 0), min(0.4, 0.3)} 

= max (0, 0.3) 

= 0.3 

δA1(z4,z3) = max {min[A1(x1),δA1(z4,z3)], min[A1(x1),δA2(z4,z3)]} 

= max  {min(1,0), min(0.4, 0)} 

= max (0,0) 

= 0     

δA1(z4,z4) =  max {min[A1(x1),δA1(z4,z4)], min[A1(x1),δA2(z4,z4)]}  

= max {min(1,1), min(0.4,0.6)}  

= max (1, 0.4) 
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= 1 

Thus the last row of δA1 is [0.4  0.3  0  1] 

The matrix δA1 is 

 

δA1 =  [

        
        
      
        

] 

 

To calculate the fuzzy next state E, and the fuzzy output state B, of the fuzzy automaton. 

E1  =  C1.δA1 

=  [1  0.8  0.6  0.4] [

        
        
      
        

]       

E1 = [max(0, 0.3, 0.5, 0.4)  max(0.4, 0.8, 0, 0.3)  max(0.4, 0, 0, 0)  

                                                                         max(1, 0.4, 0.6, 0.4)] 

E1 = [0.5,  0.8,  0.4  1] 

 

B1 = C1.R 

=  [1  0.8  0.6  0.4] [

   
   
   
       

] 

=  [ max(1,  0  0  0.4)  max(0, 0, 0.6,  0.3)   

max(0, 0, 0.6, 0.3)] 

B1 =  [1  0.8  0.6]   

Assume that the next fuzzy input state is given A2 = [0, 1] 

Then compute the matrix δA2, 

Using the equation, 
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δAt(zi,zj) = 
   

        { min [At(xk), δx(zi,zj)]} 

δA2(z1,z1) = max{min[A2(x1),δA1(z1,z1)], min[A2(x2),δA2(z1,z1)]} 

= max {min(0, 0.), min(1,0)} 

= max (0, 0) 

= 0 

δA2(z1,z2) = max {min[A2(x1),δA1(z1,z2)], min[A2(x2),δA2(z1,z2)]} 

= max {min(0, 0.4), min(1, 0)} 

= max (0, 0) 

= 0 

δA2(z1,z3) = max {min[A2(x1),δA1(z1,z3)], min[A2(x2),δA2(z1,z3)]} 

= max {min(0, 0.2), min(1, 1) 

= max (0, 1)  

= 1 

δA2(z1,z4) = max {min[A2(x1),δA1(z1,z4)], min[A2(x2),δA2(z1,z4)]} 

= max {min(0, 1), min(1,0)} 

= max (0, 0) 

= 0 

Thus the first row of δA2 is [ 0,  0,  1,  0 ] 

δA2(z2,z1) = max {min[A2(x1),δA1(z2,z1)], min[A2(x2),δA2(z2,z1)]} 

= max {min(0, 0.3), min(1, 0.2)} 

= max (0, 0.2) 

= 0.2 

δA2(z2,z2) = max {min[A2(x1),δA1(z2,z2)], min[A2(x2),δA2(z2,z2)]} 

= max {min(0, 1), min(1, 0)} 

= max (0, 0) 
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= 0 

δA2(z2,z3) = max {min[A2(x1),δA1(z2,z3)], min[A2(x2),δA2(z2,z3)]} 

= max {min(0, 0), min(1, 0)} 

= max (0, 0) 

= 0 

δA2(z2,z4) = max {min[A2(x1),δA1(z2,z4)], min[A2(x2),δA2(z2,z4)]] 

= max {min(0, 0.2), min(1, 1)} 

= max (0, 1) 

= 1 

Thus the second row of δA2 is [0.2  0  0  1] 

δA2(z3,z1) = max {min[A2(x1),δA1(z3,z1)], min[A2(x2),δA2(z3,z1)]} 

= max {min(0, 0.5), min(1, 0)} 

= max (0, 0) 

= 0 

δA2(z3,z2) = max {min[A2(x1),δA1(z3,z2)], min[A2(x2),δA2(z3,z2)]} 

= max {min(0, 0), min(1, 0)} 

= max (0, 0) 

= 0 

δA2(z3,z3) = max {min[A2(x1),δA1(z3,z3)], min[A2(x2),δA2(z3,z3)]} 

= max {min(0, 0), min(1, 0)] 

= max (0, 0) 

= 0 

δA2(z3,z4) = max {min[A2(x1),δA1(z3,z4)], min[A2(x2),δA2(z3,z4)]} 

= max {min(0, 1), min(1, 1)} 

= max (0, 1) 
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= 1 

Thus the third row of δA2 is [0  0  0  1]. 

δA2(z4,z1) = max {min[A2(x1),δA1(z4,z1)], min[A2(x2),δA2(z4,z1)]} 

= max {min(0, 0), min(1, 1)} 

= max (0, 1) 

= 1 

δA2(z4,z2) = max {min[A2(x1),δA1(z4,z2), min[A2(x2),δA2(z4,z2)]} 

= max {min(0, 0), min(1, 0.3)} 

= max (0, 0.3) 

= 0.3 

δA2(z4,z3) = max {min[A2(x1),δA1(z4,z3)], min[A2(x2),δA2(z4,z3)]} 

= max {min(0, 0), min(1, 0)} 

= max (0, 0) 

= 0 

δA2(z4,z4) = max {min[A2(x1),δA1(z4,z4)], min[A2(x2),δA2(z4,z4)]} 

= max {min(0, 1), min(1, 0.6)} 

= max (0, 0.6) 

= 0.6 

Thus the last row of δA2 is [1  0.3 0  0.6]. 

The matrix δA2 is, 

δA2 = [

     
      
    
        

] 

Then        E2 = C2.δA2 = E1.δA2  
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= [0.5  0.8  0.4 1][

    
      
    
        

] 

                     

= { masx(0, 0.2, 0, 1)  max(0, 0, 0, 03)  max(0.5, 0, 0, 0)   

                                                                           max(0, 0.8, 0.4, 0.6)} 

E2 = [ 1  0.3  0.5  0.8] 

B2 = E1.R 

= [0.5  0.8  0.4 1][

   
   
   
       

] 

= { max(0.5, 0, 0, 0.5)  max(0, 0.8, 0, 1)  max(0, 0,0.4,  0.3)} 

B2 = [0.5  1  0.4] 

Similarly, we can produce large sequences of fuzzy internal state and output states for any given 

sequences of fuzzy input states of a fuzzy automaton.               
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