β₀-Connectedness in Topological Spaces

Sumit¹, Alok Kumar²

¹Department of Mathematics, University of Delhi, New delhi-110007, India <u>Sumitkumar405@gmail.com</u> ² Deshbandhu College, University of Delhi, New delhi-110019, India <u>alok.kadiyan@gmail.com</u>

Abstract: In this paper, we introduce a new form of connectedness in topological space called β_0 -connectedness which is stronger form of β -connectedness and weaker form of connectedness. We also investigate some special properties of β_0 -connectedness. We further consider the components of β_0 -connectedness.

Keywords: β -open, β_0 -open, connectedness, β -connectedness, β_0 -connectedness, topological spaces.

Introduction

Several form of connectedness were investigated in the literature such as semi-connectedness [7] preconnectedness [5] and β -connectedness [1,3,6] based on the notions, semi-open [8], preopen [4], semipreopen [9] (β -open [2]) sets respectively. In this paper we introduce a new type of connectedness called β_0 -connectedness which is stronger form of β -connectedness and weaker form of connectedness.

This paper organized as follows. Section-2 develops the necessary preliminaries. The concept of β_0 -open sets is introduced. Section-3 introduces the notion of β_0 -connected spaces. It is shown that β_0 -connectedness lie between β -connectedness and connectedness. Section-4 contains the properties of β_0 -connected sets. Section-5 studies the concept of β_0 -components.

Preliminaries

In this section we will discuss some relevant definitions and introduce some new results for the paper. Let (X, τ) be a topological space, we will denote Cl(A) and Int(A) the closure of A and the interior of A respectively. We also denote X is a topological space in place of (X, τ) .

Definition 2.1: A subset A of X is said to be open (resp. β -open [1]. if $A \subseteq IntA$ (resp. $A \subseteq Cl(Int(Cl(A)))$).

The complement of open (resp. β -open) set is said to be closed (resp. β -closed).

Definition 2.2: A β -open subset of A of a topological space X is said to be β_0 -open if for each $x \in A$ there exist a closed set F such that $x \in F \subseteq A$. A subset B of a topological space X is β_0 -closed, if X\B is β_0 -open.

The family of all open (resp. β -open, β_0 -open) subsets of a topological space X is denoted by $O(X)(resp. \beta_0(X), \beta_0 O(X))$. The family of all closed (resp. β -closed, β_0 -closed) subsets of a topological space X is denoted by C(X) (resp., $\beta C(X), \beta_0 C(X)$).

Definition 2.3: A point $x \in X$ is said to be an β_0 -interior point

of A, if there exists an β_0 -open set U containing x such that $x \in U \subseteq A$. The set of all β_0 -interior points of A is said to be β_0 -interior of A and it is denoted by β_0 int(A).

Definition 2.4: Intersection of all β_0 -closed sets containing F is called β_0 -closure of F and it is denoted by β_0 Cl(A).

It may be noted that β_0 -open sets are obtained from β -open sets but the collection of these sets is neither a sub-collection of open sets nor it contains the collection of open sets. Thus, the study of β_0 -open set is meaningful.

Example 2.5:

$$X = \{a, bc, d\}, \tau = \{\phi, X, \{a\}, \{b\}, \{a, b\}, \{b, c, d\}\}$$
Here $\{a, c, d\} \in \beta_0 O(X)$ but $\{a, c, d\} \notin \tau$. Also $\{b\} \in \tau$ but $\{b\} \notin \beta_0 O(X)$.

Lemma 2.6: Let A be a subset of a topological space X. If A is both open and closed, thus A is both β_0 -open and β_0 -closed. **Proof:** Let A be a subset of X w2hich is both open and closed in X. Then int(A) = A = Cl(A) and $A \subseteq Cl(int(Cl(A)))$. Thus A is β -open. Let $B = X \setminus A$ is also β -open and A and B are closed set. Thus A and B are β_0 -open set which implies A is β_0 -opne and β_0 -closed.

The converse of the above lemma need not hold in general:

Example 2.7: In \mathbb{R} with the usual topology on \mathbb{R} the set (*a*, *b*) is β_0 -open and β_0 -called, but not open and closed in \mathbb{R} .

Definition 2.8: Let X and Y be two topological spaces. A function $f: X \to Y$ is β_0 -contains at a point $x \in X$ if for each open set V of Y containing v, there exists an β_0 -open set U in X containing x such that $f(U) \subseteq V$. If f is β_0 -continuous at every point x of X, then it is called β_0 -continuous.

Proposition 2.9: Let X and Y be two topological space. A function $f: X \to Y$ is β_0 -continuous if and only if the inverse image of every open set in Y is β_0 -open in X.

Proof: Sufficiency: Let V be an open set of Y. Let x be a point of $f^{-1}(V)$. Then $f(n) \in V$, so by hypothesis there is β_0 -open set U_x containing 'x' such that $f(U_x) \subset V$. Then $U_x \subset f^{-1}(V)$.

Thus
$$f^{-1}(V) = \bigcup_{x \in f^{-1}(v)} U_x$$
 is β_0 -open in X.

Necessity: Let $x \in X$ and V be an open set in Y containing f(x). Then $f^{-1}(V)$ is β_0 -open and $x \in f^{-1}(V)$. Since $f(f^{-1}(v)) \subseteq V$, f is β_0 -continuous.

3 β_0 -Connected Space

Definition 3.1: Nonempty subsets A and B of a topological space X are said to β_0 -separated if $A \cap \beta_0 Cl(B) = \phi = \beta_0 Cl(A) \cap B$

It is obvious that two β_0 -separated sets are disjoint. If A and B are two β_0 -separated sets in *X* with $\phi \neq C \subset A$ and $\phi \neq D \subset B$, then C and D are also β_0 -separated sets in *X*.

 $\psi \neq D \subset D$, then C and D are also p₀-separated sets in

Following is the existence of β_0 -separated sets:

Example 3.2: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{a, d\}, \{b, c\}, \{a, b, c\}, \{a, b, d\}, \{a, c, d\}, X\}$. We take $A = \{a, c, d\}$ and $B = \{b\}$.

Then $\beta_0 Cl(A) = A$ and $\beta_0 Cl(B) = B$. Therefore $A \cap \beta_0 Cl(B) = \phi = \beta_0 Cl(A) \cap B = A \cap B = \phi$. Thus A and B are two β_0 -separated subsets of X.

Definition 3.3: A subset S of a topological space X is said to be β_0 -connected if S is not the union of two β_0 -separated sets in X.

Existence of β_0 -connected sets:

Example 3.4: Let X = {a, b, c, d}, $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b\}, c\}, X$ } then $\beta_0 O(X) = \{\phi, \{c, d\}, \{b, c, d\}, X\}$. We cannot express X s the union of two β_0 -separated sets in X and so X is β_0 -connected.

Theorem 3.5: For a topological space X, the following statements hold :-

- (1) If X is β -connected, then X is β_0 -connected.
- (2) If X is β_0 -connected, then X is connected.

Proof: (1) The proof is obvious from the fact that $\beta_0 O(X) \subseteq \beta O(X)$.

(2) Let X be β₀-connected. Then only subsets of X which are both β₀-open and β₀-closed in X are s and X. If possible suppose that S is not connected. Then there erxists a non-empty proper subset A of X which is both open and closed ion X. Then by Lemma 2.6, A is also β₀-open and β₀-closed in X. Thus A is nonempty proper of X which is both β₀-open and β₀-closed in X a contradiction. Hence we must have X is connected.

We give a moderate figure for relationship of various connectedness:

 $\begin{array}{l} \beta \text{-connected} \\ \downarrow \\ \beta_0 \text{-connected} \end{array}$

|

Semi-connected \rightarrow connected \leftarrow preconnected

The converse implications of the above figure need not hold in general.

Example 3.6: Let $X = \{a, b, c, d\}$ and $\tau = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, b, c\}, X\}$. Then $\beta 0(X) = \{\phi, \{a\}, \{b\}, \{a, b\}, \{a, c\}, \{a, b\}, \{c\}, \{b, d\}, \{a, b, c\}, \{a, b, d\}, \{b, c\}, \{c, d\}, \{b, c, d\}, X\}$.

Then X is β_0 -connected but not β -connected. Since $\{a, b\}$ and $\{b, c\}$ are β -separated sets of X.

Results 3.7: If possible suppose that every connected space is β_0 -connected. As every β_0 -connected space is β -connected, then every connected space is β_0 -connected, then every connected space is β -connected. This contradicts example [3]. Thus every β_0 -connected space is not necessarily a connected space.

For remaining counter examples of above figure see [3].

Theorem 3.8: A topological space X is β_0 -connected if and only if X cannot be expressed as the union of two disjoint nonempty β_0 -open subsets of X.

Proof: Let X be β_0 -connected. Let U and V be two disjoint nonempty β_0 -Open subsets of X such that $X = U \cup U$. But A =X-U and B = X-V. Then A and B are β_0 -closed in X. Thus $A \cap \beta_0 cl(B) = \phi = \beta_0 cl(A) \cap B$ and $X = A \cup B$ is not β_0 -connected. Thus is a contradiction. Thus X cannot be expressed as the union of two disjoint nonempty β_0 -open subsets of X. Conversely suppose that the condition holds. Suppose

Conversely suppose that the condition holds. Suppose $X = A \cup B$, $A \neq \phi \neq B$ and $A \cap \beta_0 cl(B) = \phi = \beta_0 cl(A) \cap B$. But $U = X \setminus \beta_0 cl(A)$

and $V = X - \beta_0 cl(B)$. Then U and V are nonempty β_0 -open sets and $U \cup V = (X - \beta_0 cl(A)) \cup (X - \beta_0 cl(B))$ $= X - (\beta_0 cl(A) \cap \beta_0 cl(B)) \subseteq X$. This implied that

$$\begin{split} X = U \cup V & . & \text{Again} \\ U \cap V = (X - \beta_0 cl(A)) \cap (X - \beta_0 cl(B)) = X - (\beta_0 cl(A) \cup \beta_0 cl(A)) \\ \end{bmatrix}$$

. Since $X = A \cup B$. This is a contradiction. Thus X is β_0 -connected.

Theorem 3.9: For a topological space X the following statements following are equivalent:

- (1) X is β_0 -connected.
- (2) The only subsets of X which are both β₀-open and β₀-closed are X and the empty set.
- (3) X cannot be expressed as the union of two disjoint nonempty β_0 -open sets.
- (4) There is no non-constant onto β₀-continuous function from X to a discrete space which contains more than one point.

Proof: $(1) \rightarrow (2)$

Let X be β_0 -connected. Let $A \subset X$ which is both β_0 -open and β_0 -closed in X. Then B = X - A is also β_0 -open and β_0 -closed in X. Since A and B are β_0 -closed therefore $\beta_0 cl(A) = A$ and $\beta_0 cl(B) = B$. Therefore $\beta_0 cl(A) \cap B = A \cap B = \phi$. Since X is β_0 -connected so we

(i)

must have one of A and B be empty on X. (2) \rightarrow (3) Obvious.

(3) \rightarrow (4). Let Y be a discrete space with more than one point and let $f: X \rightarrow Y$ be an onto β_0 -continuous function. Let $Y = U \cup V$, where U and V are two disjoint nonempty β_0 -open sets in Y. Since $f: X \rightarrow Y$ is onto0, therefore $f(X) = Y = U \cup V \Longrightarrow X = f^{-1}(Y) = f^{-1}(U) \cup f^{-1}(V)$. Since the topology of Y is discrete, so both U and V are open in Y. Again since f is β_0 -continuous so the invese image of every open set in Y is β_0 -open in X. Consequently $f^{-1}(U)$ and $f^{-1}(V)$ both are (nonempty) β_0 -open in X which contradicts (3).

(4) \Rightarrow (1) if possible suppose that X is not β_0 -connected. We decompose X as $A \cup B$, where Az and B are nonempty subsets of X such that $\beta_0 cl(A) \cap B = \phi$ or $\beta_0 cl(B) \cap A = \phi$. We see that both A and B are β_0 -open sets in X. In fact $B = X - \beta_0 cl(A)$ and $\beta_0 cl(A)$ is the smallest β_0 -cclosed set containing A and hence β_0 -closed in X. So B is β_0 -open in X. Let Y = {0, 1} with discrete topology. We define a map $f: X \to Y$ by

 $f(x) = \begin{cases} 0, & \text{if } x \in A \\ 1, & \text{if } x \in B. \end{cases}$

Then $f^{-1}(\phi) = \phi$, which is β_0 -open in X, $f^{-1}(Y) = f^{-1}(\{0\} \cup \{1\}) = f^{-1}(\{0\})$

 $\cup f^{-1}(\{1\}) = A \cup B = X, f^{-1}(\{0\}) = A$ which is β_0 -open in X, $f^{-1}(\{1\}) = B$, which is β_0 -open in X. Again ϕ , $\{0\}, \{1\}, X$ are open in Y = $\{0, 1\}$ with discrete topology. Thus we see that the inverse image of every open set

in Y is β_0 -open in X. Hence f is β_0 -continuous and onto which contradicts (4) for X. **Definition 3.10:** Let X and Y be two topologies space A function $f: X \to Y$ is said to be β_0 -irresolute if the inverse

image of every β_0 -open set in Y under f is β_0 -open in X. **Theorem 3.11:** Let X and Y be two topological spaces. Let $f: X \to Y$ be an onto β_0 -irresolute function. If X is

 β_0 -connected, then Y is β_0 -connected. **Proof:** Let X and Y be two topological space and $f: X \to Y$ be an onto β_0 -irresolute function. Suppose that X is β_0 -connected. If A is a subset of Y which is both β_0 -open and β_0 -closed, then $f^{-1}(A)$ is both β_0 -open and β_0 -closed in X. Since X is β_0 -separated so $f^{-1}(A)$ must be all of X or the empty set. Therefore A = f(X) = Y or $A = \phi$ and we have proved that Y to be β_0 -connected.

Theorem 3.12: Let $f: X \to \mathbb{R}$ be a β_0 -continuous map from a β_0 -connected space X to the real line \mathbb{R} if x, y are two points of X such that a = f(x) and b = f(y), then every real number 'r' between *a* and *b* is attained at a point in X.

Proof: Suppose there is no point $c \in X$, such that f(c) = r. Then $A = (-\infty, r)$ and $B = (r, \infty)$, are disjoint open sets in \mathbb{R} . Since if is β_0 -continuous, $f^{-1}(A)$ and $f^{-1}(B)$ are disjoint β_0 -open sets in X and $X = f^{-1}(A) \cup f^{-1}(B)$. This is a contradiction to the fact that X is β_0 -connected. Therefore, there exists a point $c \in X$ such that f(c) = r.

4 Properties of β₀-connected sets

Theorem 4.1: If A is a β_0 -connected set of a topological space X and U, V are β_0 -separated sets of X such that $A \subseteq U \cup V$, then either $A \subseteq U$ or $A \subseteq V$.

Proof: Since $A = (A \cap U) \cup (A \cap V)$, we have $(A \cap U) \cap \beta_0 cl(A \cap V) \subset U \cap \beta_0 cl(V) = \phi$. Similarly we have $(A \cap U) \cap \beta_0 cl(A \cap V) = \phi$. If $A \cap U$ and $A \cap V$ are nonempty, then A is not β_0 -connected which is a contradiction. Therefore, either $A \cap U = \phi$ or $A \cap V = \phi$. It follows that either $A \subseteq U$ or $A \subseteq V$.

Theorem 4.2: If A is a β_0 -connected set of a topology space X and $A \subseteq N \subseteq \beta_0 cl(A)$, then N is β_0 -connected.

Proof: Assume that N is not β_0 -connected. Then there exist β_0 -separated sets U and V such that $N = U \cup V$. Therefore, U and V are nonempty $U \cap \beta_0 cl(V) = \phi$ = $\beta_0 cl(U) \cap V$. By Theorem 4.1, we obtain either $A \subset U$ or $B \subset V$.

Suppose that $A \subset U$. Then $\beta_0 cl(A) \subset \beta_0 cl(U)$ and $V \cap \beta_0 cl(A) = \phi$. But by hypothesis, $V \subset N \subset \beta_0 cl(A)$ and $V = \beta_0 cl(A) \cap V = \phi$.

This is contradiction since V is nonempty.

(ii) Suppose that $A \subset V$. Similarly we obtain that U is empty. This is a contradiction. This implies that N is β_0 -connected.

Corollary 4.3: If A is a β_0 -connected subset of a topological space X, then $\beta_0 cl(A)$ is β_0 -connected.

Theorem 4.3: Let A and B be subsets of a topological space *X*. *If A and B* are β_0 -connected and not β_0 -separted in X, then $A \cup B$ is β_0 -connected.

Proof: Suppose that $A \cup B$ is not β_0 -connected. Then there exist β_0 -separated 1, D in X such that $A \cup B = C \cup D$. Then $A \subset C \cup D$. From Theorem 4.1, Other $A \subset C$ or $A \subset D$. Similalry, we obtain that either $B \subset C$ or $B \subset D$. If $A \subset C$ and $B \subset C$, then $A \cup B \subset C$ and D = ϕ . This is a contradiction. Therefore $A \subset C$ and $B \subset D$. Again similarly $A \subset D$ and $B \subset C$. Therefore we obtain $\beta_0 cl(A) \cap B \subset \beta_0 cl(C) \cap n = \phi$ and $\beta_0 cl(B) \cap A \subset \beta_0 cl(C) \cap D = \phi$. Therefore A, B are β_0 -separated in X. This is a contradiction, Therefore, $A \cup B$ is β_0 -connected. **Theorem 4.5:** If $\{B_r \mid \gamma \in \Gamma\}$ is a nontmpty family of

Theorem 4.5: If $\{B_r | \gamma \in I\}$ is a nontmpty family of β_0 -connected subsets of A topological space X such that

 $\bigcap_{\gamma \in \Gamma} B_r \neq \phi \text{, then } \bigcap_{\gamma \in \Gamma} B_r \text{ is a } \beta_0 \text{-connected.}$

Proof: Suppose that $N = \bigcap_{\gamma \in \Gamma} B_r$ and N is non β_0 -connected it follows that $N = U \cup V$, where U and V are β_0 -separated sets in X. Since $\bigcap_{\gamma \in \Gamma} B_r \neq \phi$, we can choose a point γ in

 $\bigcap_{\gamma \in \Gamma} B_r. \text{ Since } n \in N, \text{ either } x \in U \text{ or } x \in V.$

(1) Suppose that x ∈ U. Since x ∈B_r for each γ ∈ Γ. Now by Theorem 4.1, B_γ must be either U or V. Since U and V are disjoint, B_γ ⊂ U for all γ ∈ Γ and hence N ⊂ U. This means that V is empty which is a contradiction.

(2) Suppose $x \in V$. Then similarly we obtain that U is empty

which is a contradiction. Therefore, $\bigcup_{\gamma \in \Gamma} B_r$ is β_0 -

-connected.

Theorem 4.6: If $\{A_n \mid n \in \Box\}$ is an infinite sequence of β_0 -connected subsets of a topological space X and

 $A_N \cap A_{n+1} \neq \phi$ for each $n \in \mathbb{N}$, then $\bigcup_{n \in \mathbb{N}} A_n$ is

 β_0 -connected.

Proof: The proof follows by induction and Theorem 4.4.

Theorem 4.7: Let X, Y be two topological spaces and $X \times Y$ be with the product topology. If X and Y aere β_0 -connected, then $X \times Y$ is β_0 -connected.

Proof: For any points (x_1, y_1) and (x_2, y_2) in X×Y, then subspace $(X \times \{y_1\}) \cup (\{x_2\} \times Y)$ contains the two points. This subspace is β_0 -connected, since it is the union of two β_0 -connected subspaces of X×Y with a point (x_2, y_1) is common. By Theorem 4.4, X×Y is a β_0 -connected.

5 β₀-Components

Definition 5.1: Let X be a topological space and $x \in X$. The β_0 -component of X containing x is the union of all β_0 -connected subsets of X containing x.

A β_0 -component of X is β_0 -connected by Theorem 4.4.

Theorem 5.2: For a topological space X the following properties hold:

 Each β₀-component of X is a maximal β₀-connected subset of X.

- (2) The set of all distinct β_0 -components of X forms a portion of X.
- (3) Each β_0 -component of X is β_0 -closed in X.

Proof: (1) Obvious.

(2) Since singleton's are β_0 -connected sets, each point **x** of **X** is contained in the β_0 -component of X containing **x**. Suppose that C₁ and C₂ are two distinct β_0 -components of X. If C₁ and

Sumit, IJSRM Volume 5 Issue 07 July 2017 [www.ijsrm.in]

 C_2 intersects, then $C_1 \cup C_2$ is β_0 -connected by Theorem 4.4. Thus, either C_1 is not maximal or C_2 is not maximal, a contradiction. Therefore, C_1 and C_2 are disjoint.

(3) Let C be any β_0 -component of X containing \boldsymbol{X} .

By Corollary 4.3, $\beta_0 cl(C)$ is β_0 -connected set containing x. Since C is maximal β_0 -connected set containing x, $\beta_0 cl(c) \subseteq C$. Thus, C is β_0 -closed in X.

REFERENCES

- Aho. T. Nieminen, T., Spaces in which preopen subsets are semi-open. Ricerche Mat. 43 (1994),45-59.
- El-Monsefl M.E. Abd: El-Deep, S.N. and Mohamoud,
 R.A., β-Open sets and β-continuous mappings, Bull.
 Fac. Sci. Assiut Univ. 12 (1983), 77-90.
- 3. Jafari, S. and Noiri T., Properties of β -connected Space, Acta Math. Hungar. 101 (2003), 227-236.
- Mashhour, AS: El-Monsef, M.E. Abd and El-Deep, S.N., On pre-continuous and Week precontinuous mappings, Proc. Math. phys. Soc. Egypt. 53 (1983), 47-53.
- Popa, V., Properties of H-almost continuous function, Bull. Math. Soc. Math. R.S. Roumanie (NS) 31 (1987). 163-168.
- Popa, V. and Noiri, T., Weakly β-function, An. Univ. Timisoara Sec. Mat. inform 32 (1994) 83-92.
- Popitone, V. and Russo G., Spazi Semi conessie spaze semiaperli, Rend. Circ. Mat. Palermo (24) (1975), 273-285.
- Levine, N., Semi-open sets and semi-continuity in Topological spaces. Amer. Mat. Monthly 70 (1963), 36-41.
- 9. Andrijevie, D., Semi-preopen sets, Mat. vensik, 38 (1996), 24-32.