Business Intelligence and Artificial Intelligence for Sustainable Business Operations
Downloads
In the modern business landscape, sustainability has become a fundamental goal for organizations, driven by growing environmental concerns, social responsibility, and the need for long-term profitability (Bocken et al., 2014). Companies are under increasing pressure to reduce their environmental footprint, optimize resources, and improve operational efficiency, all while maintaining competitiveness. Business Intelligence (BI) and Artificial Intelligence (AI) have emerged as key technologies in this transition, offering organizations the ability to make data-driven decisions that promote sustainability (Chen et al., 2020). BI encompasses tools and techniques that convert raw data into actionable insights, helping businesses optimize operations and minimize waste (Shollo & Galliers, 2016). On the other hand, AI, particularly machine learning and predictive analytics, enhances decision-making by forecasting trends, automating processes, and providing deeper insights into complex datasets (Jeble et al., 2020).
This article explores the integration of BI and AI in driving sustainable business operations. It examines their individual contributions and the synergistic benefits they bring when combined. Key applications discussed include energy management, where BI helps track energy consumption patterns, and AI optimizes resource allocation to minimize waste (Kemp et al., 2021). In supply chain optimization, BI analyzes supplier performance and inventory levels, while AI forecasts demand and automates processes to reduce carbon footprints (Saghafian et al., 2020). Waste reduction efforts are enhanced through predictive analytics, which help anticipate production needs and reduce excess output (Karim et al., 2021). Environmental monitoring, powered by AI and IoT sensors, allows for real-time analysis of environmental conditions, ensuring compliance with sustainability standards (Khan et al., 2021).
However, the implementation of these technologies also presents challenges. Data integration remains a significant barrier, as companies often face difficulties in harmonizing large datasets from disparate sources (Laudon & Laudon, 2019). The initial investment in BI and AI technologies can be high, making it difficult for small and medium-sized enterprises (SMEs) to adopt these solutions (Zhang et al., 2020). Additionally, a shortage of skilled professionals in data science and AI poses another challenge, limiting the effective use of these technologies (Brynjolfsson & McAfee, 2014). Despite these challenges, the potential of BI and AI to foster sustainable business operations is substantial, and overcoming these barriers will be key to unlocking their full potential. The article concludes by discussing strategies for successful implementation and the future outlook for BI and AI in sustainable business practices.
Downloads
1. Barton, C., & Kuan, K. (2018). The role of artificial intelligence in sustainable business practices. Journal of Sustainable Business, 13(2), 45-56.
2. Binns, A. (2018). The ethics of artificial intelligence: Issues and challenges. AI & Society, 33(4), 497-506.
3. Brynjolfsson, E., & McAfee, A. (2014). The Second Machine Age: Work, Progress, and Prosperity in a Time of Brilliant Technologies. W. W. Norton & Company.
4. Chen, M., Mao, S., & Liu, Y. (2020). Big data: A survey. Mobile Networks and Applications, 25(6), 1598-1612.
5. Chong, A. Y. L., Li, B., & Wong, T. (2020). Predicting the adoption of Industry 4.0 technologies: The role of sustainability. Technological Forecasting & Social Change, 161, 120319.
6. Elkington, J. (1997). Cannibals with Forks: The Triple Bottom Line of 21st Century Business. Capstone Publishing.
7. Hart, S. L., & Milstein, M. B. (1999). Global sustainability and the creative destruction of industries. Sloan Management Review, 41(1), 23-33.
8. Huang, S., Li, W., & Zhang, M. (2019). Application of artificial intelligence in sustainable supply chain management. International Journal of Advanced Manufacturing Technology, 103(5), 1881-1893.
9. Khan, F., & Saeed, S. (2021). Real-time monitoring for environmental compliance in industrial operations. Environmental Monitoring and Assessment, 193(5), 269.
10. Kemp, R., & Pearson, P. (2021). Energy efficiency and sustainable resource management in industry. Energy Efficiency, 14(4), 945-960.
11. Laudon, K. C., & Laudon, J. P. (2019). Management Information Systems: Managing the Digital Firm (15th ed.). Pearson.
12. Mourtzis, D., & Vlachou, E. (2018). The role of IoT in sustainable manufacturing: A state-of-the-art review. Procedia CIRP, 69, 314-319.
13. Shollo, A., & Galliers, R. D. (2016). Business intelligence success: The roles of BI capabilities and organizational factors. Information Systems Management, 33(1), 4-21.
14. Chander, V., & Gangenahalli, G. (2020). Pluronic-F127/Platelet Microvesicles nanocomplex delivers stem cells in high doses to the bone marrow and confers post-irradiation survival. Scientific Reports, 10(1), 156.
15. JOSHI, D., SAYED, F., BERI, J., & PAL, R. (2021). An efficient supervised machine learning model approach for forecasting of renewable energy to tackle climate change. Int J Comp Sci Eng Inform Technol Res, 11, 25-32.
16. H. Rathore and R. Ratnawat, "A Robust and Efficient Machine Learning Approach for Identifying Fraud in Credit Card Transaction," 2024 5th International Conference on Smart Electronics and Communication (ICOSEC), Trichy, India, 2024, pp. 1486-1491, doi: 10.1109/ICOSEC61587.2024.10722387.
17. P. Singla and H. Rathore, "Innovative Message Routing for Next Generation Transportation System Using GA-Based SVM," 2024 34th International Telecommunication Networks and Applications Conference (ITNAC), Sydney, Australia, 2024, pp. 1-7, doi: 10.1109/ITNAC62915.2024.10815246.
18. Joshi, D., Sayed, F., Saraf, A., Sutaria, A., & Karamchandani, S. (2021). Elements of Nature Optimized into Smart Energy Grids using Machine Learning. Design Engineering, 1886-1892.
19. Han, J., Yu, M., Bai, Y., Yu, J., Jin, F., Li, C., ... & Li, L. (2020). Elevated CXorf67 expression in PFA ependymomas suppresses DNA repair and sensitizes to PARP inhibitors. Cancer Cell, 38(6), 844-856.
20. Zeng, J., Han, J., Liu, Z., Yu, M., Li, H., & Yu, J. (2022). Pentagalloylglucose disrupts the PALB2-BRCA2 interaction and potentiates tumor sensitivity to PARP inhibitor and radiotherapy. Cancer Letters, 546, 215851.
21. Khambati, A. (2021). Innovative Smart Water Management System Using Artificial Intelligence. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(3), 4726-4734.
22. Yu, J., Han, J., Yu, M., Rui, H., Sun, A., & Li, H. (2024). EZH2 inhibition sensitizes MYC-high medulloblastoma cancers to PARP inhibition by regulating NUPR1-mediated DNA repair. Oncogene, 1-15.
23. Han, J., Yu, J., Yu, M., Liu, Y., Song, X., Li, H., & Li, L. (2024). Synergistic effect of poly (ADP-ribose) polymerase (PARP) inhibitor with chemotherapy on CXorf67-elevated posterior fossa group A ependymoma. Chinese Medical Journal, 10-1097.
24. Joshi, D., Parikh, A., Mangla, R., Sayed, F., & Karamchandani, S. H. (2021). AI Based Nose for Trace of Churn in Assessment of Captive Customers. Turkish Online Journal of Qualitative Inquiry, 12(6).
25. Lin, L. I., & Hao, L. I. (2024). The efficacy of niraparib in pediatric recurrent PFA⁃ type ependymoma. Chinese Journal of Contemporary Neurology & Neurosurgery, 24(9), 739.
26. Han, J., Song, X., Liu, Y., & Li, L. (2022). Research progress on the function and mechanism of CXorf67 in PFA ependymoma. Chin Sci Bull, 67, 1-8.
27. Khambaty, A., Joshi, D., Sayed, F., Pinto, K., & Karamchandani, S. (2022, January). Delve into the Realms with 3D Forms: Visualization System Aid Design in an IOT-Driven World. In Proceedings of International Conference on Wireless Communication: ICWiCom 2021 (pp. 335-343). Singapore: Springer Nature Singapore.
28. Cardozo, K., Nehmer, L., Esmat, Z. A. R. E., Afsari, M., Jain, J., Parpelli, V., ... & Shahid, T. (2024). U.S. Patent No. 11,893,819. Washington, DC: U.S. Patent and Trademark Office.
29. Patil, S., Dudhankar, V., & Shukla, P. (2024). Enhancing Digital Security: How Identity Verification Mitigates E-Commerce Fraud. Journal of Current Science and Research Review, 2(02), 69-81.
30. Aljrah, I., Alomari, G., Aljarrah, M., Aljarah, A., & Aljarah, B. INTELLIGENT SYSTEMS AND APPLICATIONS IN ENGINEERING.
31. Nishat, A. (2024). Enhancing CI/CD Pipelines and Container Security Through Machine Learning and Advanced Automation.
32. Aljarah, B., Alomari, G., & Aljarah, A. (2024). Leveraging AI and Statistical Linguistics for Market Insights and E-Commerce Innovations. AlgoVista: Journal of AI & Computer Science, 3(2).
33. Aljarah, B., Alomari, G., & Aljarah, A. (2024). Synthesizing AI for Mental Wellness and Computational Precision: A Dual Frontier in Depression Detection and Algorithmic Optimization. AlgoVista: Journal of AI & Computer Science, 3(2).
34. JALA, S., ADHIA, N., KOTHARI, M., JOSHI, D., & PAL, R. SUPPLY CHAIN DEMAND FORECASTING USING APPLIED MACHINE LEARNING AND FEATURE ENGINEERING.
35. Elgassim, M., Abdelrahman, A., Saied, A. S. S., Ahmed, A. T., Osman, M., Hussain, M., ... & Salem, W. (2022). Salbutamol-Induced QT Interval Prolongation in a Two-Year-Old Patient. Cureus, 14(2).
36. Alawad, A., Abdeen, M. M., Fadul, K. Y., Elgassim, M. A., Ahmed, S., & Elgassim, M. (2024). A Case of Necrotizing Pneumonia Complicated by Hydropneumothorax. Cureus, 16(4).
37. Joshi, D., Sayed, F., Jain, H., Beri, J., Bandi, Y., & Karamchandani, S. A Cloud Native Machine Learning based Approach for Detection and Impact of Cyclone and Hurricanes on Coastal Areas of Pacific and Atlantic Ocean.
38. Malhotra, I., Gopinath, S., Janga, K. C., Greenberg, S., Sharma, S. K., & Tarkovsky, R. (2014). Unpredictable nature of tolvaptan in treatment of hypervolemic hyponatremia: case review
39. on role of vaptans. Case reports in endocrinology, 2014(1), 807054. Gopinath, S., Ishak, A., Dhawan, N., Poudel, S., Shrestha, P. S., Singh, P., ... & Michel, G. (2022). Characteristics of COVID-19 breakthrough infections among vaccinated individuals and
40. associated risk factors: A systematic review. Tropical medicine and infectious disease, 7(5), 81. Phongkhun, K., Pothikamjorn, T., Srisurapanont, K., Manothummetha, K., Sanguankeo, A., Thongkam, A., ... & Permpalung, N. (2023). Prevalence of ocular candidiasis and Candida
41. endophthalmitis in patients with candidemia: a systematic review and meta-analysis. Clinical
42. Infectious Diseases, 76(10), 1738-1749. Bazemore, K., Permpalung, N., Mathew, J., Lemma, M., Haile, B., Avery, R., ... & Shah, P. (2022). Elevated cell-free DNA in respiratory viral infection and associated lung allograft
43. dysfunction. American Journal of Transplantation, 22(11), 2560-2570. Chuleerarux, N., Manothummetha, K., Moonla, C., Sanguankeo, A., Kates, O. S., Hirankarn, N., ... & Permpalung, N. (2022). Immunogenicity of SARS-CoV-2 vaccines in patients with
44. multiple myeloma: a systematic review and meta-analysis. Blood Advances, 6(24), 6198-6207. Roh, Y. S., Khanna, R., Patel, S. P., Gopinath, S., Williams, K. A., Khanna, R., ... & Kwatra, S. G. (2021). Circulating blood eosinophils as a biomarker for variable clinical presentation and
45. therapeutic response in patients with chronic pruritus of unknown origin. The Journal of
46. Allergy and Clinical Immunology: In Practice, 9(6), 2513-2516. Mukherjee, D., Roy, S., Singh, V., Gopinath, S., Pokhrel, N. B., & Jaiswal, V. (2022). Monkeypox
47. as an emerging global health threat during the COVID-19 time. Annals of Medicine and
48. Surgery, 79. Singh, V. K., Mishra, A., Gupta, K. K., Misra, R., & Patel, M. L. (2015). Reduction of
49. microalbuminuria in type-2 diabetes mellitus with angiotensin-converting enzyme inhibitor
50. alone and with cilnidipine. Indian Journal of Nephrology, 25(6), 334-339. Shilpa, Lalitha, Prakash, A., & Rao, S. (2009). BFHI in a tertiary care hospital: Does being Baby
51. friendly affect lactation success?. The Indian Journal of Pediatrics, 76, 655-657.
52. Gopinath, S., Janga, K. C., Greenberg, S., & Sharma, S. K. (2013). Tolvaptan in the treatment
53. of acute hyponatremia associated with acute kidney injury. Case reports in nephrology, 2013(1), 801575. Gopinath, S., Giambarberi, L., Patil, S., & Chamberlain, R. S. (2016). Characteristics and
54. survival of patients with eccrine carcinoma: a cohort study. Journal of the American Academy
55. of Dermatology, 75(1), 215-217. Permpalung, N., Liang, T., Gopinath, S., Bazemore, K., Mathew, J., Ostrander, D., ... & Shah, P. D. (2023). Invasive fungal infections after respiratory viral infections in lung transplant
56. recipients are associated with lung allograft failure and chronic lung allograft dysfunction
57. within 1 year. The Journal of Heart and Lung Transplantation, 42(7), 953-963. Gopinath, S., Sutaria, N., Bordeaux, Z. A., Parthasarathy, V., Deng, J., Taylor, M. T., ... & Kwatra, S. G. (2023). Reduced serum pyridoxine and 25-hydroxyvitamin D levels in adults with
58. chronic pruritic dermatoses. Archives of Dermatological Research, 315(6), 1771-1776. Swarnagowri, B. N., & Gopinath, S. (2013). Ambiguity in diagnosing esthesioneuroblastoma-- a case report. Journal of Evolution of Medical and Dental Sciences, 2(43), 8251-8255. Swarnagowri, B. N., & Gopinath, S. (2013). Pelvic Actinomycosis Mimicking Malignancy: A
59. Case Report. tuberculosis, 14, 15. Permpalung, N., Bazemore, K., Mathew, J., Barker, L., Horn, J., Miller, S., ... & Shah, P. D. (2022). Secondary Bacterial and Fungal Pneumonia Complicating SARS-CoV-2 and Influenza
60. Infections in Lung Transplant Recipients. The Journal of Heart and Lung Transplantation, 41(4), S397. Swarnagowri, B. N., & Gopinath, S. Scholars Journal of Medical Case Reports ISSN 2347-6559. SAMIKSHA, R., SUBA, T., & GOPINATH, S. PLACENTA PERCRETA: CAUSE OF RUPTURE OF THE
61. UTERUS. Gopinath, S. COMPLETE ANDROGEN INSENSITIVITY SYNDROME.
62. Zhou, J., Lin, Z., Zheng, Y., Li, J., & Yang, Z. (2022). Not all tasks are born equal: Understanding zero-shot generalization. In The Eleventh International Conference on Learning Representations.
63. Xu, H., Lin, Z., Zhou, J., Zheng, Y., & Yang, Z. (2022). A universal discriminator for zero-shot generalization. arXiv preprint arXiv:2211.08099.
64. Permpalung, N., Bazemore, K., Mathew, J., Barker, L., Horn, J., Miller, S., ... & Shah, P. D. (2022). Secondary Bacterial and Fungal Pneumonia Complicating SARS-CoV-2 and Influenza Infections in Lung Transplant Recipients. The Journal of Heart and Lung Transplantation, 41(4), S397.
65. Gopinath, S., & Gopinath, K. V. (2017). Breast Cancer in Native American Women: A Population Based Outcomes Study involving 863,958 Patients from the Surveillance Epidemiology and End Result (SEER) Database (1973-2010). Journal of Cancer Science and Clinical Therapeutics, 1, 22-31.
66. Rahman, A., Debnath, P., Ahmed, A., Dalim, H. M., Karmakar, M., Sumon, M. F. I., & Khan, M. A. (2024). Machine learning and network analysis for financial crime detection: Mapping and identifying illicit transaction patterns in global black money transactions. Gulf Journal of Advance Business Research, 2(6), 250-272.
67. Islam, M. Z., Islam, M. S., Al Montaser, M. A., Rasel, M. A. B., Bhowmik, P. K., & Dalim, H. M. (2024). EVALUATING THE EFFECTIVENESS OF MACHINE LEARNING ALGORITHMS IN PREDICTING CRYPTOCURRENCY PRICES UNDER MARKET VOLATILITY: A STUDY BASED ON THE USA FINANCIAL MARKET. The American Journal of Management and Economics Innovations, 6(12), 15-38.
68. Chowdhury, M. S. R., Islam, M. S., Al Montaser, M. A., Rasel, M. A. B., Barua, A., Chouksey, A., & Chowdhury, B. R. (2024). PREDICTIVE MODELING OF HOUSEHOLD ENERGY CONSUMPTION IN THE USA: THE ROLE OF MACHINE LEARNING AND SOCIOECONOMIC FACTORS. The American Journal of Engineering and Technology, 6(12), 99-118.
69. Hossain, M. S., Mohaimin, M. R., Alam, S., Rahman, M. A., Islam, M. R., Anonna, F. R., & Akter, R. (2025). AI-Powered Fault Prediction and Optimization in New Energy Vehicles (NEVs) for the US Market. Journal of Computer Science and Technology Studies, 7(1), 01-16.
70. Sumsuzoha, M., Rana, M. S., Islam, M. S., Rahman, M. K., Karmakar, M., Hossain, M. S., & Shawon, R. E. R. (2024). LEVERAGING MACHINE LEARNING FOR RESOURCE OPTIMIZATION IN USA DATA CENTERS: A FOCUS ON INCOMPLETE DATA AND BUSINESS DEVELOPMENT. The American Journal of Engineering and Technology, 6(12), 119-140.
71. Sizan, M. M. H., Chouksey, A., Miah, M. N. I., Pant, L., Ridoy, M. H., Sayeed, A. A., & Khan, M. T. (2025). Bankruptcy Prediction for US Businesses: Leveraging Machine Learning for Financial Stability. Journal of Business and Management Studies, 7(1), 01-14.
72. Sumon, M. F. I., Rahman, A., Debnath, P., Mohaimin, M. R., Karmakar, M., Khan, M. A., & Dalim, H. M. (2024). Predictive Modeling of Water Quality and Sewage Systems: A Comparative Analysis and Economic Impact Assessment Using Machine Learning. in Library, 1(3), 1-18.
73. Reza, S. A., Chowdhury, M. S. R., Hossain, S., Hasanuzzaman, M., Shawon, R. E. R., Chowdhury, B. R., & Rana, M. S. (2024). Global Plastic Waste Management: Analyzing Trends, Economic and Social Implications, and Predictive Modeling Using Artificial Intelligence. Journal of Environmental and Agricultural Studies, 5(3), 42-58.
74. Al Montaser, M. A., Ghosh, B. P., Barua, A., Karim, F., Das, B. C., Shawon, R. E. R., & Chowdhury, M. S. R. (2025). Sentiment analysis of social media data: Business insights and consumer behavior trends in the USA. Edelweiss Applied Science and Technology, 9(1), 545-565.
75. Mohaimin, M. R., Das, B. C., Akter, R., Anonna, F. R., Hasanuzzaman, M., Chowdhury, B. R., & Alam, S. (2025). Predictive Analytics for Telecom Customer Churn: Enhancing Retention Strategies in the US Market. Journal of Computer Science and Technology Studies, 7(1), 30-45.
76. Saghafian, S., & Van Oyen, M. P. (2020). Supply chain coordination and demand forecasting with artificial intelligence. European Journal of Operational Research, 283(3), 777-789.
77. Zhang, H., & Zheng, J. (2020). Challenges in AI and Data Science: Exploring Barriers for SMEs. Journal of Information Technology, 35(2), 106-122.
78. Zhao, L., Zhang, Z., & Li, X. (2020). Enhancing sustainability in supply chains through data-driven analytics. Journal of Cleaner Production, 275, 122828.
79. Jeble, S., Soni, G., & Shukla, M. (2020). Application of Artificial Intelligence in Supply Chain: Challenges and Opportunities. International Journal of Production Economics, 228, 107671.
80. Hassani, H., Silva, E. S., & Ghodsi, M. (2020). Big data and sustainability: Applications, challenges, and future directions. Sustainability, 12(10), 4084.
81. Bocken, N. M. P., Short, S. W., Rana, P., & Evans, S. (2014). A literature and practice review to develop sustainable business model archetypes. Journal of Cleaner Production, 65, 42-56.
Copyright (c) 2025 Amejuma Emmanuel Ebule

This work is licensed under a Creative Commons Attribution 4.0 International License.