Bayesian Estimation of Exponentiated Inverse Rayleigh Distribution
Downloads
In this paper, exponentiated inverse Rayleigh distribution is considered for Bayesian analysis. The expressions for Bayes estimators of the parameter have been derived under squared error, precautionary, entropy, K-loss, and Al-Bayyati’s loss functions by using quasi and gamma priors.
Downloads
Rao, G.S. and Mbwambo, S., (2019): “Exponentiated inverse Rayleigh distribution and an application to coating weights of iron sheets data”. Journal of Probability and Statistics, Vol. 2019, Article ID 7519429, 13 pages.
Zellner, A., (1986): “Bayesian estimation and prediction using asymmetric loss functions”. Jour. Amer. Stat. Assoc., 91, 446-451.
Basu, A. P. and Ebrahimi, N., (1991): “Bayesian approach to life testing and reliability estimation using asymmetric loss function”. Jour. Stat. Plann. Infer., 29, 21-31.
Norstrom, J. G., (1996): “The use of precautionary loss functions in Risk Analysis”. IEEE Trans. Reliab., 45(3), 400-403.
Calabria, R., and Pulcini, G. (1994): “Point estimation under asymmetric loss functions for left truncated exponential samples”. Comm. Statist. Theory & Methods, 25 (3), 585-600.
D.K. Dey, M. Ghosh and C. Srinivasan (1987): “Simultaneous estimation of parameters under entropy loss”. Jour. Statist. Plan. And infer., 347-363.
D.K. Dey, and Pei-San Liao Liu (1992): “On comparison of estimators in a generalized life Model”. Microelectron. Reliab. 32 (1/2), 207-221.
Wasan, M.T., (1970): “Parametric Estimation”. New York: Mcgraw-Hill.
Al-Bayyati, (2002): “Comparing methods of estimating Weibull failure models using simulation”. Ph.D. Thesis, College of Administration and Economics, Baghdad University, Iraq.
Copyright (c) 2021 International Journal of Scientific Research and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.