Computing the temporal intervals by making a Throne-Morris wormhole from a Kerr black hole in the context of f(R,T) gravity
Downloads
In the paper we will proceed towards taking the larger root of and make it equal to zero to remove the event horizon of a Kerr black hole (BH) in Boyer-Lindquist coordinates with a prevalent ring type singularity that can be smoothen by a tunneling approach of a spherinder thereby proceeding safely towards the Cauchy horizon with the deduced intervals computed in detail for the time travel in the Throne-Morris wormhole (WH) approach under gravity without the presence of any exotic matter at the WH mouth thereby preserving the asymptotically solutions of flaring out conditions and mouth opening during the course of the journey through the Einstein-Rosen bridge. An approach has been organized in the paper in which not only time travel is possible without exotic matter but also time travel is flexible to past and future in the Einstein’s universe by eliminating all sorts of paradoxes by spatial sheath through 2D approach of temporal dimensions.
Downloads
Rindler, W. (2001). Time from Newton to Einstein to Friedman. KronoScope, 1(1), 63–73. https://doi.org/10.1163/156852401760060928
Trautman, A. (2002). Lectures on General Relativity. General Relativity and Gravitation, 34(5), 721–762. https://doi.org/10.1023/a:1015939926662
Bhattacharjee, D. Path Tracing Photons Oscillating Through Alternate Universes Inside a Black Hole. Preprints 2021, 2021040293, 1–3. https://dx.doi.org/10.20944/preprints202104.0293.v1
Bhattacharjee, D. Deciphering Black Hole Spin, Inclination angle & Charge From Kerr Shad-ow. Preprints 2021, 2021040315, 1–3. https://dx.doi.org/10.20944/preprints202104.0315.v1
Bhattacharjee, D. (2020d). Solutions of Kerr Black Holes subject to Naked Singularity and Worm-holes. Authorea, 1–4. https://doi.org/10.22541/au.160693414.46356832/v1
Wells, H. G. (2021). The Time Machine (Royal Collector’s Edition) (Case Laminate Hardcover with Jacket). Royal Classics.
Sagan, C. (2019). Contact: A Novel (Reprint ed.). Gallery Books.
Nolan, C. (Director). Interstellar [Flim], Paramount Pictures, Warner Bros. Pictures, Legendary Pic-tures, Syncopy, Lynda Obst Productions.
Vasiliev, V. V., & Fedorov, L. V. (2018). To the Schwarzschild Solution in General Relativity. Journal of Modern Physics, 09(14), 2482–2494. https://doi.org/10.4236/jmp.2018.914160
Katanaev, M. O. (2014). Passing the Einstein–Rosen bridge. Modern Physics Letters A, 29(17), 1450090. https://doi.org/10.1142/s0217732314500904
Torii, T., & Shinkai, H. A. (2013). Wormholes in higher dimensional space-time: Exact solutions and their linear stability analysis. Physical Review D, 88(6). https://doi.org/10.1103/physrevd.88.064027
Hawking, S. W., Ellis, G. F. R., Landshoff, P. V., Nelson, D. R., Sciama, D. W., & Weinberg, S. (1975). The Large Scale Structure of Space-Time (Cambridge Monographs on Mathematical Physics) (New Ed). Cambridge University Press.
Morris, M. S., & Thorne, K. S. (1988). Wormholes in spacetime and their use for interstellar travel: A tool for teaching general relativity. American Journal of Physics, 56(5), 395–412. https://doi.org/10.1119/1.15620
Mars, M. (1999). A spacetime characterization of the Kerr metric. Classical and Quantum Gravity, 16(7), 2507–2523. https://doi.org/10.1088/0264-9381/16/7/323
Bhattacharjee, D. Positive Energy Driven CTCs In ADM 3+1 Space – Time of Unprotected Chro-nology. Preprints 2021, 2021040277, 1–7. https://dx.doi.org/10.20944/preprints202104.0277.v1
James, O., von Tunzelmann, E., Franklin, P., & Thorne, K. S. (2015). Visualizing Interstellar’s Wormhole. American Journal of Physics, 83(6), 486–499. https://doi.org/10.1119/1.4916949
Hawking, S. W. (1992). Chronology protection conjecture. Physical Review D, 46(2), 603–611. https://doi.org/10.1103/physrevd.46.603
Luminet, J. P. (2018). Closed Timelike Curves and Singularities. Inference: International Review of Science, 4(1). https://doi.org/10.37282/991819.18.32
Throne, K. S. (1993). Closed Timelike Curves. A Caltech Goldenrod Preprint in Theoretical Physics or Gravitational Physics.
Chanda, A. Dey, S. Paul, B. C. (2021). Morris-Thorne Wormholes in f(R,T) modified theory of grav-ity arXiv:2102.01556v1 [gr-qc]
Stewart, I. (2010). Grandfather paradox. Nature, 464(7293), 1398. https://doi.org/10.1038/4641398a
Davis, M. (2020, December 23). 7. Polchinski’s paradox. Big Think. https://bigthink.com/surprising-science/10-bizarre-paradoxes?rebelltitem=8
Christoforou, P. (2019, December 1). Time Travel & the Bootstrap Paradox Explained. https://www.astronomytrek.com/the-bootstrap-paradox-explained/
Perry, P. (2018, October 5). There are 2 dimensions of time, theoretical physicist states. Big Think. https://bigthink.com/philip-perry/there-are-in-fact-2-dimensions-of-time-one-theoretical-physicist-states
Ewbank, A. (2018, December 24). When Stephen Hawking Threw a Cocktail Party for Time Travel-ers. Atlas Obscura. https://www.atlasobscura.com/articles/stephen-hawking-time-travelers-party
Spherinder. (2021, May 30). In Wikipedia. https://en.wikipedia.org/wiki/Spherinder
Landau, L. D. (2021). The Classical Theory of Fields (Course of Theoretical Physics) by L. D. Lan-dau (1-Jan-1980) Paperback. Butterworth-Heinemann; Revised edition (1 Jan. 1980).
Rezzolla, L., & Zanotti, O. (2018). Relativistic Hydrodynamics (Reprint ed.). Oxford University Press.
Visser, M (2007). "The Kerr spacetime: A brief introduction". p. 15, Eq. 60-61, p. 24, p. 35. arXiv:0706.0622v3[gr-qc].
Boyer, R. H., & Lindquist, R. W. (1967). Maximal Analytic Extension of the Kerr Metric. Journal of Mathematical Physics, 8(2), 265–281. https://doi.org/10.1063/1.1705193
Carter, B. (1968). Global Structure of the Kerr Family of Gravitational Fields. Physical Review, 174(5), 1559–1571. https://doi.org/10.1103/physrev.174.1559
Bardeen, J. M., Press, W. H., & Teukolsky, S. A. (1972). Rotating Black Holes: Locally Nonrotating Frames, Energy Extraction, and Scalar Synchrotron Radiation. The Astrophysical Journal, 178, 347. https://doi.org/10.1086/151796
Godani, N., & Samanta, G. C. (2019). Static traversable wormholes in f(R,T)=R+2αlnT gravity. Chi-nese Journal of Physics, 62, 161–171. https://doi.org/10.1016/j.cjph.2019.09.009
Kerr metric. (2021, April 30). In Wikipedia. https://en.wikipedia.org/wiki/Kerr_metric
Sahoo, P. K., Moraes, P. H. R. S., & Sahoo, P. (2018). Wormholes in $$R^2$$ R 2 -gravity within the f(R, T) formalism. The European Physical Journal C, 78(1). https://doi.org/10.1140/epjc/s10052-018-5538-1
McMahon, D. (2008). String Theory Demystified (1st ed.). McGraw-Hill Education.
Bhattacharjee, D., Harikant, A., & Singha Roy, S. (2019b). Improvising the Hierarchy Problem with respect to F-Theory. ResearchGate, 1–3. https://doi.org/10.13140/RG.2.2.35954.53444
NineDimensionalBeing. (2015, March 3). Exploring the 4D Spherinder. Imgur. https://imgur.com/gallery/ORY5G/comment/374041029/1
Newman–Penrose formalism. (2021, January 4). In Wikipedia. https://en.wikipedia.org/wiki/Newman%E2%80%93Penrose_formalism
Newman, E., & Penrose, R. (1962). An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 3(3), 566–578. https://doi.org/10.1063/1.1724257
Newman, E., & Penrose, R. (1962b). An Approach to Gravitational Radiation by a Method of Spin Coefficients. Journal of Mathematical Physics, 3(3), 566–578. https://doi.org/10.1063/1.1724257
Chandrasekhar, L. T. S. (1998). The Mathematical Theory of Black Holes (Oxford Classic Texts in the Physical Sciences). Clarendon Press.
Griffiths, J. B. (2012). Exact Space-Times in Einstein’s General Relativity (Cambridge Monographs on Mathematical Physics) (1st ed.). Cambridge University Press.
Frolov, & Novikov. (1998). Black Hole Physics: Basic Concepts and New Developments (Funda-mental Theories of Physics, 96) (1998th ed.). Springer.
Ashtekar, A., Fairhurst, S., & Krishnan, B. (2000). Isolated horizons: Hamiltonian evolution and the first law. Physical Review D, 62(10). https://doi.org/10.1103/physrevd.62.104025
O'Donnell, P. (2003) Introduction to 2-Spinors in General Relativity. Singapore: World Scientific.
Hawking, S. W. (2001). The Universe in a Nutshell (1st ed.). Bantam.
Bhattacharjee, D. The Gateway to Parallel Universe & Connected Physics. Preprints 2021, 2021040350, 1–20, https://dx.doi.org/10.20944/preprints202104.0350.v1
Copyright (c) 2021 International Journal of Scientific Research and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.