Coupling of ¬¬Laplace Differential Transform method with Padé Approximant for the Numerical solution of Initial and Boundary value problems
Downloads
This paper presents a study using a novel linearization technique based on the Differential transformation method (DTM) to seek analytical solutions if it exists and approximate solutions where closed form solutions are not available. The effectiveness and accuracy of this procedure is verified by solving six problems comprising both initial and boundary value problems by a combination of DTM and Laplace transform method. The resulting solution is then treated with Padé approximation to obtain a better approximation that converges to the exact solution. Simulated results of the study reveal the proposed technique is reliable, accurate and computationally convenient even with few iterations. The result obtained is in good agreement with existing literature.
Downloads
Zhou, J. Differential transformation and its applications for electrical circuits Borneo Huazhong University Press, Wuhan, China. 2010.
Seyed-Habibollah, H.K., Ganji, D. D. Dynamics and Vibrations; progress in Nonlinear Analysis. Solid Mechanics and its Applications, Volume 2, Springer, New York. 2014.
Ganji, D.D. Numerical and Analytical solutions for solving Nonlinear Equations in Heat Transfer. Advances in Mechatronics and mechanical Engineering, IGI-Global, US. 2018
Abdelhafez, H. Solution of excited non-linear oscillators under damping effects using the modified differential transform method. Mathematics, 4, Volume 11, (2016), 1712-1725.
Alquran, M., Al-khaled, K., Ali, M., Ta‘any, A. The combined Laplace transform-differential transform method for solving linear nonhomogeneous PDEs. Journal of Mathematics and Computer Science, 2, Volume 3, (2012), 690-701.
Ayaz, F. Solutions of the system of differential equations by differential transform method. Applied Mathematics and Computations, 147, (2004), 547-567.
Ogunrinde, R.B. Comparative Study of Differential Transformation Method (DTM) and Adomian Decomposition Method (ADM) for Solving Ordinary Differential Equations. Journal of Contemporary Applied Mathematics, Vol. 9, No. 1, (2019), ISSN 2222-5498.
Chen, C., Ho, S. (1996). Application of differential transformation to eigenvalue
problems. Applied Mathematics and Computations, 79, (1996), 173-188.
CÎrnu, M., Frumosu, F. Initial valve problems for nonlinear differential equations solved by differential transform method. Journal of Information Systems and Operations Management, 3, Volume 1, (2009), 102-107.
[10] Darania, P., Shali, J. A., Ivaz, K. New computational method for solving
some 2-dimensional nonlinear Volterra integro-differential equations. Numerical Algorithms, 57, Volume 1, (2011), 125-147.
Demir, H., Süngü, Ï. Numerical solution of a class of nonlinear Emden-Fowler equations by differential transform method. Journal of Arts and Sciences, 2 (2009), 239-249.
Haghbin, A., Hesam, S. Reduced differential transform method for solving seventh order Sawada-Kotera equations. The Journal of Mathematics and Computer Science, 5, Volume 1 (2012), 53-59.
Hassan, I. On solving some eigenvalue problems by using differential transformation. Applied Mathematics and Computations, 127, Volume 1, (2002), 22-30.
Hassan, I. Differential transformation technique for solving higher-order initial value problems. Applied Mathematics and Computations, 154, (2004), 299-311.
Hassan, I. Comparison differential transformation technique with Adomian decomposition method for linear and nonlinear initial value problems. Chaos Solutions and Fractals. Pergamon-Elsevier Science Ltd, 36, (2008), 53-65.
Hassan, I. Solutions of different types of the linear and nonlinear higher order boundary value problems by differential transformation method. European Journal of Pure and Applied Mathematics, 2, Volume 3, (2009), 426-447.
Hassan, I. Application to differential transformation method for solving systems of differential equations. Applied Mathematical Modelling, 32, (2008), 2552-2559.
Haziqah, C., Hussin, C., Kiliçman, A. On the solutions of nonlinear higher-order boundary value problems by using differential transformation method and Adomian decomposition method. Hindawi Publishing Corporation. 2011
Hussin, C., Kiliçman, A., Mandangan, A. General differential transformation method for higher order of linear boundary value problem. Borneo Science, 27,(2010),35-46.
Iftikhar, M., Rehman, H., Younis, M. Solution of thirteen order boundary value problems by differential transformation method. Asian Journal of Mathematics and Applications, 2014.
Jang, M., Chen, C., Liy, Y. On solving the initial-value problems using the differential transformation method. Applied Mathematics and Computations, 115(2000), 145-160.
Karakoç, F., Bereketoglu, H. Solutions of delay differential equations by using differential transform method. International Journal of Computer Mathematics, 86, Volume 5, (2010), 914-923.
Keskin, Y., Oturanc, G. Reduced differential transform method for solving linear and nonlinear wave equations. Iranian Journal of Science and Technology, 34, Volume 2, (2010).
Khambayat, A., Patil, N. The numerical solution of differential transform method and the Laplace transform method for second order differential equations. International Journal of Mathematics and Computer Research, 3, Volume 2, (2015), 871-875.
Kumari, K., Gupta, P., Shanker, G. Coupling of Laplace transform and differential transform for wave equation. Physical Science International Journal, 9, Volume 4, (2016), 1-10.
Mirzaee, F. Differential transform method for solving linear and nonlinear systems of ordinary differential equations. Applied Mathematical Sciences, 5(7), 3465-3472
Momani, S., Ertürk, V. Solution of nonlinear oscillator by the modified differential transform method. Computer and Mathematics with Applications, 55, (2008), 833-842.
Moon, S., Bhosale, A., Gajbhiye, P., Lonare, G. Solution of non-linear equations by using differential transform method. International Journal of Mathematics and Statistics Invention, 2, Volume 3, (2004), 78-82.
Nourazar, S., Mirzabeigy, A. Approximate solution for nonlinear duffing oscillator with damping effect using the modified differential transform method Scientia Iranica, 20, (2011), 364-368.
Othman, M., Mahdy, A. Differential transformation method and variation iteration method for Cauchy reaction-diffusion problems. Journal of Mathematics and Computer Science, 1, Volume 2, (2010), 61-75.
Patil, N., Khambayat, A. Differential transform method for system of linear differential equations. Research Journal of Mathematical and Statistical Sciences, 2, Volume 3, (2014), 4-6.
Soltanalizadeh, B. (2011). Differential transformation method for solving one-space dimensional telegraph equation. Computational and Applied Mathematics, 30(3), 639-653.
Kajani, M., Shehni, N. Differential transform method: an effective tool for solving nonlinear Volterra integro-differential equations. Australian Journal of Basic and Applied Sciences, 5, Volume 9, (2011), 30-39.
Lin, Y., Tang, H., Chen, C. Modified differential transform method for two singular boundary value problems. Journal of Applied Mathematics, ID 138087. 2014
Xie, L., Zhou, C., Xu, S. An effective numerical method to solve a class of nonlinear singular boundary value problem using improved differential transform method. Journal of Numerical Analysis, 3, Volume 4, (2016), 201-215.
Ebiwareme, L. Application of Semi-Analytical Iteration Techniques for the Numerical Solution of Linear and Nonlinear Differential Equations. International Journal of Mathematics Trends and Technology, Volume 67, Issue 2, (2021), 146-158.
Abdel-Halim Hassan, I.H. Application to differential transformation method for solving systems of differential equations. Applied Mathematical Modelling, 32, (2008), 2552-2559.
Copyright (c) 2022 International Journal of Scientific Research and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.