DIMENSIONING OF FIXED FREQUENCY PATCH ANTENNAS BASED ON NEURAL NETWORKS
Downloads
During the last decades the race for innovation in communication systems has not ceased to evolve, which has led to important studies in the field of antennas, which today have very different forms depending on the applications such as: mobile telecommunications, television, radio, satellites, communicating systems, radar, remote sensing, radio astronomy [1]. Among the most used antenna families are the microstrip antennas (also called printed antennas or patch antennas) [2]. These antennas are characterized by: low manufacturing cost, mass production possible, linear and circular polarization, feed and matching networks manufactured simultaneously with the antenna.
The limitations of conventional neural modeling have been overcome by the introduction of neural networks based on electromagnetic knowledge. A neural network using effective parameters in conjunction with the GALERKIN function has been developed for modeling the resonant frequency of a rectangular antenna printed on a substrate [3]. Thus, we set up a rectangular PATCH antenna model on HFSS for a resonant frequency close to 6GHZ and extract the parameters S11, Z11, and VSWR, and also check the training errors on MATLAB by generating the error types on a 4-input model (Thickness, Length, Width and substrate type) and one (1) output (Resonant Frequency) that will allow to extract the final dimensions of the antennas thanks to this neural model.
Downloads
L'information et la communication dans l'entreprise », Bulletin des bibliothèques de France (BBF), 1993, n° 1, p. 76-76.
A. Ngom, A. Diallo,K. Talla, A. Chiabo, I. Dioum, A.C. Beye, J.M. Ribero “Antenne à double polarisation et diagramme reconfigurable destinée aux « smallcells » pour la 5G”, 20 Journées Nationales Microondes- 16 – 19 Mai 2017, SAINT MALO, France ;
P. Gahan, K. Mumford, D. Standeford, M. Sims, C. Viola, and J. Watson, “The 4G and 5G Spectrum Guide 2017,” The Mobile Spectrum Handbook, pp. 13–55, 2017.
Y. CHUNYANG, G. DEYUAN, W. WENBING, “Nonuniform linear antenna array optimization –genetic algorithm approach “, ISAE’97 proceeding,1997.
SCHEIR, G., HANSELAER, P., AND RYCKAERT, W. 2017. Pupillary light reflex, receptive field mechanism and correction for retinal position for the assessment of visual discomfort. Lighting Research & Technology, 1477153517737346.
B. Cockburn, G. E. Karniadakis et C.-W. Shu (eds.), Discontinuous Galerkin methods. Theory, computation and applications, LectureNotes in Computational Science and Engineering, 11. Springer-Verlag, Berlin, 2000.
E. Heidrich and W. Wiesbeck, “Wideband polarimetric rcs-antenna measurement,” in Seventh International Conference on (IEE) Antennas and Propagation, 1991. ICAP 91.,apr 1991, pp. 424 –427 vol.1.
Baykan, Eda and Henzinger, Monika and Weber, Ingmar (2008). Web page language identification based on urls. Proceedings of the VLDB Endowment, 1 (1), 176–187.
F. Rosenblatt, "The Perceptron: a probabilistic model for information
storage and organization in the brain," Psychological Review 65.
Purely url-based topic classification. Proceedings of the 18th International Conference on World Wide Web. ACM, 1109–1110.
Gashler, Michael S., and Stephen C. Ashmore. "Training Deep Fourier Neural Networks to Fit Time-Series Data." Intelligent Computing in Bioinformatics. Springer International Publishing, 2014. 48-55, « 1405.2262 » [archive], texte en accès libre, sur arXiv.
(2014). Learning activation functions to improve deep neural networks. arXiv preprintarXiv :1412.6830.
Battiti, Roberto (1989). Accelerated backpropagation learning : Two optimization methods. Complex Systems, 3 (4), 331–342.
J.S. Hesthaven et T. Warburton, Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications [archive]. Springer Texts in Applied Mathematics 54. Springer Verlag, New York, 2008.
D.A. Di Pietro et A. Ern, Mathematical Aspects of Discontinuous Galerkin Methods [archive]. Mathématiques et Applications, Vol. 69, Springer-Verlag, Berlin, 2011.
D.N. Arnold, F. Brezzi, B. Cockburn et L.D. Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39(5):1749-1779, 2002.
M.E. Brachet, M. Meneguzzi, A. Vincent, H. Politano, and P.L. Sulem. Numerical evidence of smooth self-similar dynamics and possibility of subsequent collapse for three-dimensional ideal flows. Phys. Fluids, 4 :2845, 1992.
M. Borrel and J. Ryan. The elastoplast discontinuous Galerkin (EDG) method for the Navier-Stokes equations. J. Comput. Phys., 231(1) :1–22, 2012.
M.E. Brachet, D.I. Meiron, S.A. Orszag, BG Nickel, R.H. Morf, and U. Frisch. Smallscale structure of the Taylor-Green vortex. J. Fluid. Mech., 130(41) :1452, 1983.
C. Brun, M. Petrovan Boiarciuc, M. Haberkorn, and P. Comte. Large eddy simulation of compressible channel flow. Theor. Comput. Fluid Dyn., 22(3) :189–212, 2008.
Garg et al. « Microstrip antenna design handbook », Artech House, 2001.
E. H. Newman, P. Bohley, C. H.Walter, "Two Methods for the Measurement of Antenna Efficiency", IEEE Trans. on Antennas and Propagation, vol AP-23, N°4, pp 457-461, July 1975.
K. R. Carver, J. W. Mink, "Microstrip Antenna Technology", IEEE Trans. On Antennas and Propagation, vol AP-29, N°1, pp 2 -24, January 1981.
I. J. Bahl, P. Bhartia, et S. S. Stuchly, ‘‘Design of microstrip antennas covered with a dielectric layer,’’ IEEE Trans. Antennas Propagat., vol. AP-30, pp. 314-318, Mar.1982.
M. Amir, ‘‘Analyse d’une antenne microruban à patch supraconducteur,’’ Thèse de magister, Université de Batna, Fév. 2008.
Robert Sève, Science de la couleur : Aspects physiques et perceptifs, Marseille, Chalagam, 2009, 374 p. (ISBN 978-2-9519607-5-6 et 2-9519607-5-1)
ILHEM GHARBI, "Conception d’antennes reconfigurables en bandes millimétriques pour la 5G", SUPCOM Tunis, 2021
Copyright (c) 2022 International Journal of Scientific Research and Management
This work is licensed under a Creative Commons Attribution 4.0 International License.