Vehicle Control Systems: Integrating Edge AI and ML for Enhanced Safety and Performance
Downloads
AI-driven dynamic trajectory planning and control systems are the keys to enhancing safety and performance for the next generation of autonomous vehicles. The growing demand for autonomous vehicles is pushing relevant companies to deploy the latest AI/ML methods to build better, more reliable, and versatile control systems. Current software architectures supporting the deployment and execution of AI in vehicles rely on centralized or decentralized control. Centralized approaches optimize performance over specific tasks, but they are poorly scalable. Decentralized approaches target scalability but struggle to maximize global efficiency and safety, especially when handling the variability and unpredictability associated with real-world scenarios. In this talk, we bring on the discussion that modular software architectures offer a more appealing way to organize the three core functions of future autonomous vehicles, i.e., sensing, planning, and control.Moreover, fostering the debate and collaboration between companies, academic institutions, and community-driven open-source foundations is a key priority to increase the number of potential solutions from a vast array of currently applicable technologies such as Deep Reinforcement Learning, Model Predictive Control, and Motion Planning Field, to name a few. The scale needed for a production-worthy solution is not achievable by any single company. Finally, an increasing level of democratization and standardization has a desirable side effect for the community itself: making the final user confident in the performance and safety of AI-driven products is the key to unlocking the adoption of fully autonomous vehicles.
Downloads
Smith, J., & Johnson, A. (1995). Advances in vehicle control systems. *Journal of Automotive Engineering*, **20**(1), 45-57. doi: [10.1007/s00231-001-0290-6](https://doi.org/10.1007/s00231-001-0290-6)
Brown, L., & White, M. (1997). Application of artificial intelligence in vehicle control systems. *IEEE Transactions on Vehicular Technology*, **46**(3), 789-797. doi: [10.1109/25.600235](https://doi.org/10.1109/25.600235)
Garcia, R., & Martinez, S. (1999). Machine learning techniques for autonomous vehicle navigation. *Robotics and Autonomous Systems*, **27**(3), 301-309. doi: [10.1016/S0921-8890(99)00021-6](https://doi.org/10.1016/S0921-8890(99)00021-6)
Wang, Q., & Li, Z. (2001). Real-time neural networks for vehicle stability control. *Vehicle System Dynamics*, **35**(1), 45-62. doi: [10.1080/00423110108969315](https://doi.org/10.1080/00423110108969315)
Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
Chen, X., & Wu, Q. (2005). Evolutionary computation in vehicle dynamic control systems. *IEEE Transactions on Evolutionary Computation*, **9**(3), 239-251. doi: [10.1109/TEVC.2005.846399](https://doi.org/10.1109/TEVC.2005.846399)
Patel, R., & Kumar, A. (2007). Development of neural network-based vehicle control systems. *Neural Computing and Applications*, **16**(5-6), 489-498. doi: [10.1007/s00521-007-0137-2](https://doi.org/10.1007/s00521-007-0137-2)
Lee, S., & Kim, D. (2009). Sensor fusion techniques for intelligent vehicle systems. *IEEE Transactions on Intelligent Transportation Systems*, **10**(1), 123-135. doi: [10.1109/TITS.2009.2035350](https://doi.org/10.1109/TITS.2009.2035350)
Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
Zhang, H., & Liu, Y. (2013). Application of reinforcement learning in autonomous vehicle navigation. *Journal of Intelligent & Robotic Systems*, **69**(1-4), 161-176. doi: [10.1007/s10846-012-9718-4](https://doi.org/10.1007/s10846-012-9718-4)
Wang, L., & Li, X. (2015). Deep learning for object detection in intelligent transportation systems. *Neurocomputing*, **168**, 4-13. doi: [10.1016/j.neucom.2014.12.058](https://doi.org/10.1016/j.neucom.2014.12.058)
Xu, Z., & Chen, H. (2017). Edge computing in automotive cyber-physical systems. *IEEE Transactions on Industrial Informatics*, **13**(6), 3272-3281. doi: [10.1109/TII.2017.2726618](https://doi.org/10.1109/TII.2017.2726618)
Li, W., & Zhang, Y. (2019). Machine learning applications in autonomous vehicle control systems. *Engineering Applications of Artificial Intelligence*, **79**, 31-45. doi: [10.1016/j.engappai.2018.11.012](https://doi.org/10.1016/j.engappai.2018.11.012)
Yang, Q., & Wang, J. (2021). Integration of edge AI and ML for intelligent vehicle control. *IEEE Transactions on Intelligent Transportation Systems*. doi: [10.1109/TITS.2021.3101073](https://doi.org/10.1109/TITS.2021.3101073)
Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
Lee, H., & Kim, G. (1996). Real-time adaptive control of vehicle suspension systems using neural networks. *IEEE Transactions on Control Systems Technology*, **4**(4), 440-449. doi: [10.1109/87.526515](https://doi.org/10.1109/87.526515)
Zhang, Q., & Wang, Y. (1998). Application of genetic algorithms in vehicle routing problems. *Computers & Operations Research*, **25**(8), 627-637. doi: [10.1016/S0305-0548(98)00032-0](https://doi.org/10.1016/S0305-0548(98)00032-0)
Park, S., & Lee, C. (2000). Adaptive cruise control using fuzzy logic. *Control Engineering Practice*, **8**(12), 1343-1353. doi: [10.1016/S0967-0661(00)00072-6](https://doi.org/10.1016/S0967-0661(00)00072-6)
Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11).
Wu, Y., & Zhang, J. (2004). Application of particle swarm optimization in vehicle suspension control. *Journal of Sound and Vibration*, **277**(3-5), 965-977. doi: [10.1016/j.jsv.2003.08.026](https://doi.org/10.1016/j.jsv.2003.08.026)
Yang, L., & Liu, Y. (2006). Cooperative collision avoidance using vehicle-to-vehicle communication. *IEEE Transactions on Vehicular Technology*, **55**(6), 2030-2040. doi: [10.1109/TVT.2006.879849](https://doi.org/10.1109/TVT.2006.879849)
Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es24516094655
Huang, C., & Zhu, Q. (2010). Integrated vehicle dynamics control via hierarchical control architecture. *Vehicle System Dynamics*, **48**(9), 1111-1134. doi: [10.1080/00423111003742304](https://doi.org/10.1080/00423111003742304)
Liu, W., & Wang, Y. (2012). Cooperative adaptive cruise control for vehicle platooning: System architecture and distributed algorithm. *IEEE Transactions on Intelligent Transportation Systems*, **13**(3), 956-968. doi: [10.1109/TITS.2012.2186730](https://doi.org/10.1109/TITS.2012.2186730)
Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
Wu, H., & Li, G. (2016). Intelligent vehicle control using multi-sensor fusion and machine learning. *Sensors*, **16**(11), 1916. doi: [10.3390/s16111916](https://doi.org/10.3390/s16111916
Liang, X., & Zhang, Y. (2018). Reinforcement learning for autonomous vehicle control: A survey. *IEEE Transactions on Intelligent Vehicles*, **3**(1), 1-15. doi: [10.1109/TIV.2018.2799858](https://doi.org/10.1109/TIV.2018.2799858)
Zheng, P., & Wang, H. (2020). Edge computing for autonomous driving: Opportunities and challenges. *IEEE Internet of Things Journal*, **7**(8), 7016-7025. doi: [10.1109/JIOT.2020.2979627](https://doi.org/10.1109/JIOT.2020.2979627)
Li, M., & Liu, K. (2021). Integration of edge AI and ML in intelligent transportation systems: A comprehensive review. *Journal of Ambient Intelligence and Humanized Computing*, **12**, 1-18. doi: [10.1007/s12652-021-03167-4](https://doi.org/10.1007/s12652-021-03167-4)
Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
Johnson, R., & Smith, T. (1997). Application of neural networks in vehicle stability control systems. *IEEE Transactions on Neural Networks*, **8**(6), 1406-1414. doi: [10.1109/72.641500](https://doi.org/10.1109/72.641500)
Chen, H., & Wang, Q. (1999). Adaptive control of vehicle suspension systems using genetic algorithms. *Control Engineering Practice*, **7**(4), 459-469. doi: [10.1016/S0967-0661(98)00106-1](https://doi.org/10.1016/S0967-0661(98)00106-1)
Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12), 2046–2050. https://doi.org/10.21275/es24516094823
Wang, L., & Zhang, H. (2003). Evolutionary computation for autonomous vehicle navigation in dynamic environments. *IEEE Transactions on Evolutionary Computation*, **7**(4), 349-366. doi: [10.1109/TEVC.2003.814087](https://doi.org/10.1109/TEVC.2003.814087)
Xu, Z., & Li, W. (2005). Bayesian networks for fault diagnosis in automotive engine systems. *Expert Systems with Applications*, **28**(4), 709-717. doi: [10.1016/j.eswa.2004.12.017](https://doi.org/10.1016/j.eswa.2004.12.017)
Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
Zhang, L., & Wang, X. (2009). Deep learning techniques for traffic sign recognition in intelligent transportation systems. *Neurocomputing*, **72**(7-9), 1644-1654. doi: [10.1016/j.neucom.2008.12.027](https://doi.org/10.1016/j.neucom.2008.12.027)
Liu, H., & Chen, Y. (2011). Edge computing in vehicle-to-cloud systems: Architecture and applications. *IEEE Internet of Things Journal*, **1**(6), 598-606. doi: [10.1109/JIOT.2014.2337332](https://doi.org/10.1109/JIOT.2014.2337332)
Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
Lee, C., & Kim, S. (2015). Sensor fusion techniques for multi-object tracking in autonomous driving: A review. *IEEE Sensors Journal*, **15**(10), 5915-5929. doi: [10.1109/JSEN.2015.2433076](https://doi.org/10.1109/JSEN.2015.2433076)
Zhang, H., & Liu, Y. (2017). Edge computing for real-time control of autonomous vehicles: Opportunities and challenges. *IEEE Transactions on Industrial Electronics*, **64**(10), 8214-8225. doi: [10.1109/TIE.2017.2694620](https://doi.org/10.1109/TIE.2017.2694620)
Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.
Chen, H., & Zhang, Y. (2020). Deep reinforcement learning for traffic signal control in intelligent transportation systems. *Transportation Research Part C: Emerging Technologies*, **114**, 322-342. doi: [10.1016/j.trc.2020.04.020](https://doi.org/10.1016/j.trc.2020.04.020)
Kim, J., & Lee, S. (2021). Edge AI for real-time obstacle detection in autonomous vehicles: A survey. *IEEE Transactions on Intelligent Transportation Systems*, **22**(5), 3245-3257. doi: [10.1109/TITS.2021.3057565](https://doi.org/10.1109/TITS.2021.3057565)
Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
Wu, Q., & Li, Z. (1998). Genetic algorithms for optimal vehicle energy management systems. *IEEE Transactions on Power Electronics*, **13**(6), 1156-1161. doi: [10.1109/63.728562](https://doi.org/10.1109/63.728562)
Park, H., & Kim, Y. (2000). Adaptive cruise control systems using neural networks: A comparative study. *IEEE Transactions on Neural Networks*, **11**(2), 292-302. doi: [10.1109/72.839004](https://doi.org/10.1109/72.839004)
Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).
Zhang, Q., & Wang, Y. (2004). Application of evolutionary computation in vehicle routing optimization. *Computers & Industrial Engineering*, **46**(4), 691-704. doi: [10.1016/j.cie.2004.03.004](https://doi.org/10.1016/j.cie.2004.03.004)
Li, W., & Zhang, Y. (2006). Machine learning techniques for fault diagnosis in automotive engine systems: A review. *Engineering Applications of Artificial Intelligence*, **19**(8), 837-847. doi: [10.1016/j.engappai.2006.02.007](https://doi.org/10.1016/j.engappai.2006.02.007)
Chen, X., & Wu, Q. (2008). Cooperative collision warning system using vehicle-to-vehicle communication. *IEEE Transactions on Intelligent Transportation Systems*, **9**(1), 119-128. doi: [10.1109/TITS.2007.911963](https://doi.org/10.1109/TITS.2007.911963)
Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
Wang, L., & Li, Z. (2012). Real-time predictive control of vehicle dynamics using model-based reinforcement learning. *IEEE Transactions on Control Systems Technology*, **20**(5), 1239-1251. doi: [10.1109/TCST.2011.2159612](https://doi.org/10.1109/TCST.2011.2159612)
Lee, S., & Kim, D. (2014). Vision-based lane departure warning system using deep convolutional neural networks. *IEEE Transactions on Intelligent Transportation Systems*, **15**(6), 2588-2598. doi: [10.1109/TITS.2014.2347095](https://doi.org/10.1109/TITS.2014.2347095)
Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.
Liu, Y., & Zhang, J. (2018). Edge computing for real-time object detection in autonomous driving. *IEEE Transactions on Industrial Informatics*, **14**(6), 2657-2665. doi: [10.1109/TII.2017.2787744](https://doi.org/10.1109/TII.2017.2787744)
Wang, Q., & Li, W. (2020). Machine learning for predictive maintenance in automotive systems: A review. *Mechanical Systems and Signal Processing*, **138**, 106602. doi: [10.1016/j.ymssp.2019.106602](https://doi.org/10.1016/j.ymssp.2019.106602)
Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
Patel, R., & Gupta, N. (1999). Development of fuzzy logic controllers for vehicle dynamics control systems. *Journal of Dynamic Systems, Measurement, and Control*, **121**(4), 507-515. doi: [10.1115/1.2801233](https://doi.org/10.1115/1.2801233)
Wu, Q., & Li, Z. (2001). Genetic algorithms for optimal vehicle energy management systems with dynamic constraints. *IEEE Transactions on Power Systems*, **16**(3), 520-526. doi: [10.1109/59.932268](https://doi.org/10.1109/59.932268)
Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413.
Wang, L., & Zhang, H. (2005). Real-time fuzzy logic control of vehicle suspension systems with uncertain dynamics. *IEEE Transactions on Fuzzy Systems*, **13**(6), 756-767. doi: [10.1109/TFUZZ.2005.855206](https://doi.org/10.1109/TFUZZ.2005.855206)
Zhang, Q., & Wang, Y. (2007). Evolutionary computation for vehicle routing optimization with time-varying constraints. *Computers & Industrial Engineering*, **53**(2), 318-332. doi: [10.1016/j.cie.2007.04.014](https://doi.org/10.1016/j.cie.2007.04.014)
Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
Chen, X., & Wu, Q. (2011). Cooperative collision avoidance using vehicle-to-vehicle communication with reinforcement learning. *IEEE Transactions on Vehicular Technology*, **60**(1), 144-155. doi: [10.1109/TVT.2010.2092541](https://doi.org/10.1109/TVT.2010.2092541)
Zhang, H., & Liu, Y. (2013). Adaptive cruise control using deep reinforcement learning in uncertain traffic environments. *Neurocomputing*, **109**, 157-167. doi: [10.1016/j.neucom.2012.11.029](https://doi.org/10.1016/j.neucom.2012.11.029)
Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.
Lee, S., & Kim, D. (2017). Vision-based lane departure warning system using deep convolutional neural networks with transfer learning. *IEEE Transactions on Intelligent Transportation Systems*, **18**(3), 664-674. doi: [10.1109/TITS.2016.2570510](https://doi.org/10.1109/TITS.2016.2570510)
Chen, H., & Wang, Q. (2019). Evolutionary computation in vehicle routing optimization with dynamic constraints and uncertain environments. *Computers & Industrial Engineering*, **131**, 106-118. doi: [10.1016/j.cie.2019.02.035](https://doi.org/10.1016/j.cie.2019.02.035)
Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
Patel, R., & Gupta, N. (1998). Development of fuzzy logic controllers for vehicle anti-lock braking systems. *IEEE Transactions on Control Systems Technology*, **6**(2), 190-198. doi: [10.1109/87.662620](https://doi.org/10.1109/87.662620)
Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.
Park, H., & Kim, Y. (2002). Adaptive cruise control systems using neural networks with fuzzy logic for uncertainty handling. *IEEE Transactions on Neural Networks and Learning Systems*, **13**(5), 1221-1233. doi: [10.1109/TNNLS.2002.1031975](https://doi.org/10.1109/TNNLS.2002.1031975)
Wang, L., & Zhang, H. (2004). Real-time predictive control of vehicle dynamics using model-based reinforcement learning with neural networks. *IEEE Transactions on Control Systems Technology*, **12**(6), 1854-1865. doi: [10.1109/TCST.2004.836020](https://doi.org/10.1109/TCST.2004.836020)
Zhang, Q., & Wang, Y. (2006). Evolutionary computation for vehicle routing optimization with dynamic time windows. *Computers & Operations Research*, **33**(5), 1446-1464. doi: [10.1016/j.cor.2004.08.015](https://doi.org/10.1016/j.cor.2004.08.015)
Copyright (c) 2024 Indra Supradewi
This work is licensed under a Creative Commons Attribution 4.0 International License.