AI-Driven Innovations in Automotive Safety: High-level Analysis
Downloads
Safety in the transportation sector has been of particular concern to policymakers, industry participants, and the scholarly community. The continued steady progress in scientific knowledge and technological progress has resulted in a decrease in fatal accidents. The ever-decreasing cost of computing power has created the preconditions for a new round of innovative solutions that use AI-driven technologies to enhance automotive safety. In this study, we provide a scientific-technical survey of AI-driven innovations in vehicle safety, underscore potential barriers to large-scale implementation, and provide policy recommendations. The results are intended to assist policymakers, researchers, and practitioners in a wide range of domains in understanding the potential effects of AI-driven technologies on vehicle safety.
Downloads
Brown, A., & Smith, B. (1998). "Neural Network-Based Collision Detection System for Automotive Safety." *IEEE Transactions on Intelligent Transportation Systems*, 2(3), 154-163.
DOI:[10.1109/6979.708142](https://doi.org/10.1109/6979.708142)
Mandala, V. (2018). From Reactive to Proactive: Employing AI and ML in Automotive Brakes and Parking Systems to Enhance Road Safety. International Journal of Science and Research (IJSR), 7(11), 1992–1996. https://doi.org/10.21275/es24516090203
Chen, H., & Wang, Q. (2002). "Fuzzy Logic Control for Adaptive Cruise Control Systems: A Review." *Journal of Intelligent & Fuzzy Systems*, 12(1), 21-32. DOI: [10.3233/IFS-2002 12103]
(https://doi.org/10.3233/IFS-2002-12103)
Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es2451609465
Smith, C., & Johnson, D. (2006). "Application of Genetic Algorithms in Automotive Safety Systems Optimization." *Expert Systems with Applications*, 30(2), 252-261.
DOI:https://doi.org/10.1016/j.eswa.2005.09.020
Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12),2046–2050. https://doi.org/10.21275/es24516094823
Lee, Y., & Kim, H. (2011). "Real-Time Lane Departure Warning System using Machine Learning Techniques." *IEEE Transactions on Intelligent Transportation Systems*, 12(5), 1650-1659. DOI: [10.1109/TITS.2011.2164875](https://doi.org/10.1109/TITS.2011.2164875)
Mandala, V. Towards a Resilient Automotive Industry: AI-Driven Strategies for Predictive Maintenance and Supply Chain Optimization.
Wang, L., & Zhang, M. (2016). "Deep Learning-Based Object Detection for Autonomous Vehicles." *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 38(1), 82-90. DOI: [10.1109/TPAMI.2015.2430310](https://doi.org/10.1109/TPAMI.2015.2430310)
Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.
Gupta, S., & Patel, R. (2019). "Advances in Sensor Fusion for Automotive Safety: A Comprehensive Review." *Sensors*, 19(11), 2477. DOI: [10.3390/s19112477]
(https://doi.org/10.3390/s19112477)
Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).
Kim, J., & Lee, S. (2004). "Vision-Based Pedestrian Detection System for Collision Avoidance." *IEEE Transactions on Vehicular Technology*, 53(6), 1675-1682. DOI:https://doi.org/10.1109/TVT.2004.834109
Mandala, V., & Surabhi, S. N. R. D. Intelligent Systems for Vehicle Reliability and Safety: Exploring AI in Predictive Failure Analysis.
Zhang, Q., & Wang, Y. (2008). "Intelligent Adaptive Headlight Control System using Neural Networks." *IEEE Transactions on Industrial Electronics*, 55(3), 1321-1330. DOI:https://doi.org/10.1109/TIE.2007.910733
Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.
Patel, A., & Gupta, V. (2015). "Context-Aware Collision Avoidance System for Autonomous Vehicles." *IEEE Transactions on Intelligent Transportation Systems*, 16(6), 3227-3237.
DOI:https://doi.org/10.1109/TITS.2015.2414661
Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413.
Li, X., & Zhang, Z. (2020). "A Review of Machine Learning Applications in Automotive Safety." *IEEE Access*, 8, 81768-81781. DOI:https://doi.org/10.1109/ACCESS.2020.2994763
Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.
Wang, H., & Liu, J. (2000). "A Genetic Algorithm-Based System for Vehicle Routing in Emergency Situations." *International Journal of Computational Intelligence Systems*, 2(3), 198-207. DOI: https://doi.org/10.2991/ijcis.2000.1003
Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.
Zhang, L., & Wang, F. (2012). "An Adaptive Driver Assistance System using Reinforcement Learning." *Expert Systems with Applications*, 39(5), 5532-5540. DOI: https://doi.org/10.1016/j.eswa.2011.11.092
Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cas
Park, S., & Lee, C. (2008). "Intelligent Vehicle Stability Control System based on Neuro-Fuzzy Logic." *Control Engineering Practice*, 16(5), 612-622. DOI: https://doi.org/10.1016/j.conengprac.2007.05.007
Manukonda, K. R. R. Open Compute Project Welcomes AT&T's White Box Design.
Zhang, Q., & Li, X. (2016). "Dynamic Traffic Sign Recognition using Convolutional Neural Networks." *IEEE Transactions on Intelligent Transportation Systems*, 17(6), 1631-1641. DOI: https://doi.org/10.1109/TITS.2016.2545604
Manukonda, K. R. R. Open Compute Project Welcomes AT&T's White Box Design.
Chen, Y., & Wang, K. (2019). "A Survey of Machine Learning Techniques for Autonomous Driving." *IEEE Transactions on Intelligent Vehicles*, 4(1), 1-18. DOI: https://doi.org/10.1109/TIV.2019.290870
Wang, L., & Zhang, H. (2014). "Decision Fusion for Autonomous Driving based on Bayesian Networks." *IEEE Transactions on Intelligent Transportation Systems*, 15(6), 2502-2512.
DOI:https://doi.org/10.1109/TITS.2014.2330854
Gupta, A., & Kumar, S. (2017). "A Review of Artificial Intelligence Applications in Vehicle Active Safety Systems." *Expert Systems with Applications*, 79, 106-129. DOI:https://doi.org/10.1016/j.eswa.2017.02.006
Kim, J., & Park, M. (2006). "Lane Change Assistance System using Adaptive Neuro-Fuzzy Inference." *International Journal of Automotive Technology*, 7(6), 695-702. DOI:10.1007/BF03252254](https://doi.org/10.1007/BF03252254
Zhang, Q., & Wu, Z. (2013). "Development of an AI-Based Lane Keeping System for Intelligent Vehicles." *IEEE Transactions on Industrial Informatics*, 9(3), 1278-1287. DOI:https://doi.org/10.1109/TII.2013.2239659
Wang, Y., & Li, Z. (2018). "An Adaptive Fuzzy Logic Control System for Vehicle Stability Enhancement." *International Journal of Fuzzy Systems*, 20(2), 585-597. DOI:https://doi.org/10.1007/s40815-018-0477-y
Zhang, L., & Chen, W. (2015). "A Hierarchical Decision Framework for Autonomous Driving based on Bayesian Networks." *IEEE Transactions on Intelligent Transportation Systems*, 16(2), 1168-1178. DOI:https://doi.org/10.1109/TITS.2015.2415891
Liu, Y., & Wang, H. (2011). "Evolutionary Computation Techniques for Optimization of Automotive Safety Systems." *IEEE Transactions on Evolutionary Computation*, 15(4), 508-523. DOI: [10.1109/TEVC.2010.2082563](https://doi.org/10.1109/TEVC.2010.2082563)
Zhang, Q., & Wang, M. (2019). "A Machine Learning Approach to Road Anomaly Detection for Autonomous Vehicles." *IEEE Transactions on Intelligent Transportation Systems*, 20(6), 2303-2312. DOI:https://doi.org/10.1109/TITS.2018.2860223
Wang, L., & Chen, Y. (2017). "A Deep Learning Framework for Traffic Sign Recognition and Detection." *Neurocomputing*, 227, 381-390. DOI: https://doi.org/10.1016/j.neucom.2016.11.083
Kim, J., & Park, S. (2009). "Neural Network-Based Adaptive Cruise Control System for Traffic Congestion Mitigation." *IEEE Transactions on Vehicular Technology*, 58(2), 736-744. DOI: https://doi.org/10.1109/TVT.2008.926688
Zhang, Q., & Wu, Y. (2014). "A Novel Driver Behavior Recognition System using Machine Learning Techniques." *IEEE Transactions on Human-Machine Systems*, 44(4), 485-495. DOI: https://doi.org/10.1109/THMS.2014.2326701
Wang, Y., & Liu, X. (2018). "Intelligent Collision Avoidance System using Bayesian Networks." *IEEE Transactions on Industrial Electronics*, 65(9), 7014-7023. DOI:https://doi.org/10.1109/TIE.2017.2784419
Patel, A., & Gupta, V. (2016). "A Survey of Machine Learning Applications in Autonomous Driving." *IEEE Transactions on Intelligent Vehicles*, 1(1), 1-18. DOI: https://doi.org/10.1109/TIV.2016.263505
Lee, S., & Kim, J. (2010). "Neuro-Fuzzy Control System for Adaptive Cruise Control under Uncertain Road Conditions." *International Journal of Automotive Technology*, 11(1), 51-58. DOI: https://doi.org/10.1007/s12239-010-0007-3
Zhang, L., & Wang, Y. (2017). "Deep Reinforcement Learning for Adaptive Traffic Signal Control." *IEEE Transactions on Intelligent Transportation Systems*, 18(12), 3324-3335. DOI: https://doi.org/10.1109/TITS.2017.2702539
Wang, H., & Chen, Y. (2013). "Evolutionary Optimization of Automotive Suspension Systems for Enhanced Safety." *IEEE Transactions on Industrial Informatics*, 9(3), 1678-1686. DOI: https://doi.org/10.1109/TII.2012.2221522
Zhang, Q., & Wu, Z. (2018). "A Review of Vision-Based Driver Assistance Systems for Lane Departure Detection and Warning." *Journal of Advanced Transportation*, 2018, 1-17. DOI: https://doi.org/10.1155/2018/6201683)
Wang, L., & Li, X. (2011). "Neural Network-Based Obstacle Detection System for Autonomous Vehicles." *IEEE Transactions on Industrial Electronics*, 58(12), 5376-5385. DOI: https://doi.org/10.1109/TIE.2011.212254
Chen, Y., & Wang, H. (2015). "Evolutionary Optimization of Automotive Brake Systems for Enhanced Safety." *IEEE Transactions on Industrial Electronics*, 62(5), 3156-3164. DOI: https://doi.org/10.1109/TIE.2014.2378463
Zhang, Q., & Liu, W. (2012). "A Comparative Study of Machine Learning Techniques for Traffic Sign Recognition." *Pattern Recognition Letters*, 33(17), 2288-2297. ‘
DOI:https://doi.org/10.1016/j.patrec.2012.08.010
Wang, Y., & Zhang, M. (2019). "Dynamic Speed Control System using Reinforcement Learning in Autonomous Vehicles." *IEEE Transactions on Cybernetics*, 49(11), 3925-3936. DOIhttps://doi.org/10.1109/TCYB.2018.2848578
Gupta, A., & Kumar, S. (2016). "Machine Learning-Based Adaptive Control System for Vehicle Stability Enhancement." *International Journal of Adaptive Control and Signal Processing*, 30(9), 1339-1353. DOI: https://doi.org/10.1002/acs.264
Kim, J., & Park, S. (2013). "Genetic Algorithm-Based Optimization of Automotive Safety Systems Parameters." *IEEE Transactions on Evolutionary Computation*, 17(3), 421-435. DOI: https://doi.org/10.1109/TEVC.2012.2199471
Zhang, L., & Chen, W. (2018). "A Survey of Deep Learning Techniques for Autonomous Driving." *IEEE Transactions on Intelligent Vehicles*, 3(4), 227-239. DOI:https://doi.org/10.1109/TIV.2018.2877792)
Wang, L., & Liu, Y. (2017). "Particle Swarm Optimization for Tuning Automotive Safety Systems Parameters." *Applied Soft Computing*, 60, 688-697. DOI:https://doi.org/10.1016/j.asoc.2017.07.032)
Copyright (c) 2024 Ravi Aravind, Chirag Vinalbhai Shah
This work is licensed under a Creative Commons Attribution 4.0 International License.