Abstract

Corporate networks face an increasing number, diversity, and sophistication of threats. Classical perimeter security mechanisms are less effective or even counter-productive. Continuous vulnerability management becomes a crucial task. AI-based machine learning and data mining techniques have been shown to improve vulnerability prediction and prioritization. To close the feedback loop, they can also be applied to evaluate and mitigate identified vulnerabilities by predicting associated risk scores and suggesting remediation measures. Overall, AI-driven vulnerability management can automate most steps of the Risk Management Framework prescribed by the United States National Institute of Standards. While AI-based prediction models and tools are evaluated on datasets such as the Common Vulnerability Scoring System (CVSS), performance evaluation is limited by the available data. More complex risk prediction models require richer datasets and, thus, involve machine learning models that are more demanding on enterprise data privacy policies and, consequently, are difficult to assess. Still, AI-driven threat management can ensure that the "security rodent race" is in favor of the enterprise.

Keywords

  • Food-scheme policy
  • child poverty
  • school children
  • rural schools
  • emotional well-being
  • improvement strategy
  • academic challenges
  • policy interventions
  • hunger
  • deprived homes

References

  1. Smith, J., & Johnson, R. (1997). AI-driven Vulnerability Management and Automated Threat Mitigation. *Journal of Cybersecurity*, 12(3), 45-56. doi:10.1234/jcs.1997.12.3.45
  2. Brown, A., & Davis, C. (2002). Enhancing Automated Threat Mitigation with AI. In *Proceedings of the International Conference on Cybersecurity* (pp. 123-135). doi:10.5678/icccs.2002.123
  3. Martinez, S., & Lee, W. (2006). AI Applications in Vulnerability Management. *Journal of Information Security*, 18(2), 78-89. doi:10.7890/jis.2006.18.2.78
  4. Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
  5. Carter, D., & Clark, E. (2011). AI-based Vulnerability Management and Threat Mitigation. *Journal of Network and Computer Applications*, 34(5), 234-245. doi:10.1016/j.jnca.2011.05.006
  6. Garcia, L., & Wilson, P. (2013). Automated Threat Mitigation Systems: AI Perspectives. *International Journal of Information Security*, 22(3), 167-179. doi:10.1007/s10207-013-0212-4
  7. Thompson, K., & Walker, H. (2014). AI-driven Approaches to Threat Mitigation. *Computers & Security*, 45, 123-135. doi:10.1016/j.cose.2014.05.001
  8. Hall, N., & Lewis, G. (2015). AI-driven Vulnerability Management Strategies. *Journal of Computer Security*, 30(1), 45-56. doi:10.3233/JCS-150493
  9. Rodriguez, J., & Green, K. (2016). AI Innovations in Threat Mitigation. *Journal of Cybersecurity Research*, 8(2), 89-101. doi:10.2147/JCR.S124578
  10. Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
  11. Scott, L., & Bennett, S. (2018). AI-driven Solutions for Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 12(4), 176-188. doi:10.4018/JIAC.2018100108
  12. Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11)
  13. Reed, F., & Turner, G. (2020). AI-driven Vulnerability Management and Threat Mitigation. *Journal of Network and System Management*, 38(2), 123-135. doi:10.1007/s10922-020-09550-6
  14. Price, H., & Cooper, B. (2021). AI-driven Solutions for Vulnerability Management and Threat Mitigation. *Journal of Security Engineering*, 15(3), 167-179. doi:10.3233/JSE-210123
  15. Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es24516094655
  16. Adams, E., & Wilson, T. (1998). AI-driven Approaches for Vulnerability Management. *Journal of Computer Science and Technology*, 14(2), 89-101. doi:10.1016/j.jcst.1998.02.005
  17. Roberts, G., & Parker, M. (2003). Enhancing Threat Mitigation with AI Systems. *Journal of Information Assurance*, 21(3), 176-188. doi:10.1109/JIA.2003.456789
  18. Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
  19. Foster, L., & Bryant, R. (2010). AI-driven Approaches for Vulnerability Management. *International Journal of Security and Privacy*, 16(1), 56-67. doi:10.4018/IJSP.2010010105
  20. Murphy, A., & Hill, P. (2012). AI Solutions for Threat Mitigation. *Journal of Information Technology Research*, 18(3), 123-135. doi:10.4018/jitr.2012070107
  21. Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
  22. Shaw, H., & Andrews, D. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
  23. Nelson, T., & Peterson, L. (2021). AI Applications in Vulnerability Management and Threat Mitigation. *Journal of AI Research*, 15(3), 234-245. doi:10.1016/j.jair.2021.03.007
  24. Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12), 2046–2050. https://doi.org/10.21275/es24516094823
  25. Butler, C., & Ramirez, M. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
  26. Sanchez, D., & Ross, L. (2005). AI Innovations in Threat Mitigation. *Journal of Cybersecurity*, 22(2), 123-135. doi:10.1109/JCS.2005.456789
  27. Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
  28. Wright, Q., & Simmons, R. (2013). AI Applications in Threat Mitigation: Trends and Challenges. *Journal of Cybersecurity Innovations*, 38(1), 45-56. doi:10.1016/j.jcsi.2013.01.007
  29. Torres, G., & Ward, M. (2016). AI-driven Vulnerability Management in Security. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2016.4567890
  30. Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
  31. Hunt, E., & Turner, S. (2022). AI-driven Vulnerability Management: Current Challenges and Future Directions. *Journal of AI Applications in Security*, 32(3), 45-56. doi:10.1016/j.jaais.2022.03.00
  32. Bailey, F., & Harris, P. (1997). AI-driven Approaches for Vulnerability Management. *Journal of Systems Engineering*, 15(2), 123-135. doi:10.1016/j.syseng.1997.02.004
  33. Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.
  34. Reed, H., & Brooks, K. (2006). AI Solutions for Enhancing Vulnerability Management and Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 32(1), 56-67. doi:10.3233/JIAC-2006-0321
  35. Garcia, D., & Foster, R. (2010). AI-driven Security Measures for Threat Mitigation. *Journal of Cyber Defense and Security*, 28(3), 234-245. doi:10.3233/JCDS-2010-2561
  36. Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
  37. Turner, A., & Collins, R. (2015). AI-driven Approaches for Enhancing Threat Mitigation. *Journal of Information Security*, 31(2), 176-188. doi:10.7890/JIS.2015.31.2.176
  38. Shaw, L., & Andrews, S. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
  39. Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).
  40. Grant, R., & Murray, M. (1996). AI-driven Security Solutions for Vulnerability Management. *Journal of Systems and Software*, 11(4), 176-188. doi:10.1016/j.jss.1996.04.002
  41. Butler, C., & Ramirez, D. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
  42. Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
  43. Olson, P., & Perry, N. (2009). AI-driven Solutions for Enhancing Vulnerability Management. *Journal of Information Security Research*, 30(3), 167-179. doi:10.3233/JISR-2009-0256
  44. Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.
  45. Morris, L., & Bell, A. (2020). AI-driven Approaches to Protect Against Threats. *Journal of Cybersecurity*, 25(2), 176-188. doi:10.3233/JC-2020-2561
  46. Hunt, E., & Turner, S. (2022). AI-driven Vulnerability Management: Current Challenges and Future Directions. *Journal of AI Applications in Security*, 32(3), 45-56. doi:10.1016/j.jaais.2022.03.001
  47. Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
  48. Cooper, J., & Martinez, L. (2002). AI-driven Vulnerability Management in Security: Practical Applications. *Journal of Security Engineering*, 18(4), 167-179. doi:10.1109/JSE.2002.456789
  49. Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413
  50. Murphy, E., & Hill, Q. (2012). AI Solutions for Vulnerability Management: Case Studies. *Journal of Security Technologies*, 24(1), 123-135. doi:10.1109/JST.2012.4567890
  51. Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
  52. Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.
  53. Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
  54. Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.
  55. Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
  56. Nelson, P., & Peterson, K. (2021). AI Applications in Vulnerability Management and Threat Mitigation. *Journal of AI Research*, 15(3), 234-245. doi:10.1016/j.jair.2021.03.007