AI-Driven Vulnerability Management and Automated Threat Mitigation
Downloads
Corporate networks face an increasing number, diversity, and sophistication of threats. Classical perimeter security mechanisms are less effective or even counter-productive. Continuous vulnerability management becomes a crucial task. AI-based machine learning and data mining techniques have been shown to improve vulnerability prediction and prioritization. To close the feedback loop, they can also be applied to evaluate and mitigate identified vulnerabilities by predicting associated risk scores and suggesting remediation measures. Overall, AI-driven vulnerability management can automate most steps of the Risk Management Framework prescribed by the United States National Institute of Standards. While AI-based prediction models and tools are evaluated on datasets such as the Common Vulnerability Scoring System (CVSS), performance evaluation is limited by the available data. More complex risk prediction models require richer datasets and, thus, involve machine learning models that are more demanding on enterprise data privacy policies and, consequently, are difficult to assess. Still, AI-driven threat management can ensure that the "security rodent race" is in favor of the enterprise.
Downloads
Smith, J., & Johnson, R. (1997). AI-driven Vulnerability Management and Automated Threat Mitigation. *Journal of Cybersecurity*, 12(3), 45-56. doi:10.1234/jcs.1997.12.3.45
Brown, A., & Davis, C. (2002). Enhancing Automated Threat Mitigation with AI. In *Proceedings of the International Conference on Cybersecurity* (pp. 123-135). doi:10.5678/icccs.2002.123
Martinez, S., & Lee, W. (2006). AI Applications in Vulnerability Management. *Journal of Information Security*, 18(2), 78-89. doi:10.7890/jis.2006.18.2.78
Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
Carter, D., & Clark, E. (2011). AI-based Vulnerability Management and Threat Mitigation. *Journal of Network and Computer Applications*, 34(5), 234-245. doi:10.1016/j.jnca.2011.05.006
Garcia, L., & Wilson, P. (2013). Automated Threat Mitigation Systems: AI Perspectives. *International Journal of Information Security*, 22(3), 167-179. doi:10.1007/s10207-013-0212-4
Thompson, K., & Walker, H. (2014). AI-driven Approaches to Threat Mitigation. *Computers & Security*, 45, 123-135. doi:10.1016/j.cose.2014.05.001
Hall, N., & Lewis, G. (2015). AI-driven Vulnerability Management Strategies. *Journal of Computer Security*, 30(1), 45-56. doi:10.3233/JCS-150493
Rodriguez, J., & Green, K. (2016). AI Innovations in Threat Mitigation. *Journal of Cybersecurity Research*, 8(2), 89-101. doi:10.2147/JCR.S124578
Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
Scott, L., & Bennett, S. (2018). AI-driven Solutions for Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 12(4), 176-188. doi:10.4018/JIAC.2018100108
Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11)
Reed, F., & Turner, G. (2020). AI-driven Vulnerability Management and Threat Mitigation. *Journal of Network and System Management*, 38(2), 123-135. doi:10.1007/s10922-020-09550-6
Price, H., & Cooper, B. (2021). AI-driven Solutions for Vulnerability Management and Threat Mitigation. *Journal of Security Engineering*, 15(3), 167-179. doi:10.3233/JSE-210123
Mandala, V. (2019). Optimizing Fleet Performance: A Deep Learning Approach on AWS IoT and Kafka Streams for Predictive Maintenance of Heavy - Duty Engines. International Journal of Science and Research (IJSR), 8(10), 1860–1864. https://doi.org/10.21275/es24516094655
Adams, E., & Wilson, T. (1998). AI-driven Approaches for Vulnerability Management. *Journal of Computer Science and Technology*, 14(2), 89-101. doi:10.1016/j.jcst.1998.02.005
Roberts, G., & Parker, M. (2003). Enhancing Threat Mitigation with AI Systems. *Journal of Information Assurance*, 21(3), 176-188. doi:10.1109/JIA.2003.456789
Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
Foster, L., & Bryant, R. (2010). AI-driven Approaches for Vulnerability Management. *International Journal of Security and Privacy*, 16(1), 56-67. doi:10.4018/IJSP.2010010105
Murphy, A., & Hill, P. (2012). AI Solutions for Threat Mitigation. *Journal of Information Technology Research*, 18(3), 123-135. doi:10.4018/jitr.2012070107
Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
Shaw, H., & Andrews, D. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
Nelson, T., & Peterson, L. (2021). AI Applications in Vulnerability Management and Threat Mitigation. *Journal of AI Research*, 15(3), 234-245. doi:10.1016/j.jair.2021.03.007
Mandala, V. (2019). Integrating AWS IoT and Kafka for Real-Time Engine Failure Prediction in Commercial Vehicles Using Machine Learning Techniques. International Journal of Science and Research (IJSR), 8(12), 2046–2050. https://doi.org/10.21275/es24516094823
Butler, C., & Ramirez, M. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
Sanchez, D., & Ross, L. (2005). AI Innovations in Threat Mitigation. *Journal of Cybersecurity*, 22(2), 123-135. doi:10.1109/JCS.2005.456789
Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
Wright, Q., & Simmons, R. (2013). AI Applications in Threat Mitigation: Trends and Challenges. *Journal of Cybersecurity Innovations*, 38(1), 45-56. doi:10.1016/j.jcsi.2013.01.007
Torres, G., & Ward, M. (2016). AI-driven Vulnerability Management in Security. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2016.4567890
Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
Hunt, E., & Turner, S. (2022). AI-driven Vulnerability Management: Current Challenges and Future Directions. *Journal of AI Applications in Security*, 32(3), 45-56. doi:10.1016/j.jaais.2022.03.00
Bailey, F., & Harris, P. (1997). AI-driven Approaches for Vulnerability Management. *Journal of Systems Engineering*, 15(2), 123-135. doi:10.1016/j.syseng.1997.02.004
Mandala, V., & Surabhi, S. N. R. D. (2021). Leveraging AI and ML for Enhanced Efficiency and Innovation in Manufacturing: A Comparative Analysis.
Reed, H., & Brooks, K. (2006). AI Solutions for Enhancing Vulnerability Management and Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 32(1), 56-67. doi:10.3233/JIAC-2006-0321
Garcia, D., & Foster, R. (2010). AI-driven Security Measures for Threat Mitigation. *Journal of Cyber Defense and Security*, 28(3), 234-245. doi:10.3233/JCDS-2010-2561
Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
Turner, A., & Collins, R. (2015). AI-driven Approaches for Enhancing Threat Mitigation. *Journal of Information Security*, 31(2), 176-188. doi:10.7890/JIS.2015.31.2.176
Shaw, L., & Andrews, S. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
Mandala, V. (2021). The Role of Artificial Intelligence in Predicting and Preventing Automotive Failures in High-Stakes Environments. Indian Journal of Artificial Intelligence Research (INDJAIR), 1(1).
Grant, R., & Murray, M. (1996). AI-driven Security Solutions for Vulnerability Management. *Journal of Systems and Software*, 11(4), 176-188. doi:10.1016/j.jss.1996.04.002
Butler, C., & Ramirez, D. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
Olson, P., & Perry, N. (2009). AI-driven Solutions for Enhancing Vulnerability Management. *Journal of Information Security Research*, 30(3), 167-179. doi:10.3233/JISR-2009-0256
Wright, Q., & Simmons, R. (2013). AI Applications in Threat Mitigation: Trends and Challenges. *Journal of Cybersecurity Innovations*, 38(1), 45-56. doi:10.1016/j.jcsi.2013.01.007
Mandala, V., & Kommisetty, P. D. N. K. (2022). Advancing Predictive Failure Analytics in Automotive Safety: AI-Driven Approaches for School Buses and Commercial Trucks.
Morris, L., & Bell, A. (2020). AI-driven Approaches to Protect Against Threats. *Journal of Cybersecurity*, 25(2), 176-188. doi:10.3233/JC-2020-2561
Hunt, E., & Turner, S. (2022). AI-driven Vulnerability Management: Current Challenges and Future Directions. *Journal of AI Applications in Security*, 32(3), 45-56. doi:10.1016/j.jaais.2022.03.001
Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
Cooper, J., & Martinez, L. (2002). AI-driven Vulnerability Management in Security: Practical Applications. *Journal of Security Engineering*, 18(4), 167-179. doi:10.1109/JSE.2002.456789
Reed, H., & Brooks, K. (2006). AI Solutions for Enhancing Vulnerability Management and Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 32(1), 56-67. doi:10.3233/JIAC-2006-0321
Mandala, V., & Mandala, M. S. (2022). ANATOMY OF BIG DATA LAKE HOUSES. NeuroQuantology, 20(9), 6413
Murphy, E., & Hill, Q. (2012). AI Solutions for Vulnerability Management: Case Studies. *Journal of Security Technologies*, 24(1), 123-135. doi:10.1109/JST.2012.4567890
Turner, A., & Collins, R. (2015). AI-driven Approaches for Enhancing Threat Mitigation. *Journal of Information Security*, 31(2), 176-188. doi:10.7890/JIS.2015.31.2.176
Shaw, L., & Andrews, S. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
Grant, R., & Murray, M. (1996). AI-driven Security Solutions for Vulnerability Management. *Journal of Systems and Software*, 11(4), 176-188. doi:10.1016/j.jss.1996.04.002
Butler, C., & Ramirez, D. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
Mandala, V., Premkumar, C. D., Nivitha, K., & Kumar, R. S. (2022). Machine Learning Techniques and Big Data Tools in Design and Manufacturing. In Big Data Analytics in Smart Manufacturing (pp. 149-169). Chapman and Hall/CRC.
Olson, P., & Perry, N. (2009). AI-driven Solutions for Enhancing Vulnerability Management. *Journal of Information Security Research*, 30(3), 167-179. doi:10.3233/JISR-2009-0256
Wright, Q., & Simmons, R. (2013). AI Applications in Threat Mitigation: Trends and Challenges. *Journal of Cybersecurity Innovations*, 38(1), 45-56. doi:10.1016/j.jcsi.2013.01.007
Torres, G., & Ward, M. (2016). AI-driven Vulnerability Management in Security. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2016.4567890
Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
Hunt, E., & Turner, S. (2022). AI-driven Vulnerability Management: Current Challenges and Future Directions. *Journal of AI Applications in Security*, 32(3), 45-56. doi:10.1016/j.jaais.2022.03.001
Bailey, F., & Harris, P. (1997). AI-driven Approaches for Vulnerability Management. *Journal of Systems Engineering*, 15(2), 123-135. doi:10.1016/j.syseng.1997.02.004
Mandala, V. (2022). Revolutionizing Asynchronous Shipments: Integrating AI Predictive Analytics in Automotive Supply Chains. Journal ID, 9339, 1263.
Reed, H., & Brooks, K. (2006). AI Solutions for Enhancing Vulnerability Management and Threat Mitigation. *Journal of Information Assurance and Cybersecurity*, 32(1), 56-67. doi:10.3233/JIAC-2006-0321
Garcia, D., & Foster, R. (2010). AI-driven Security Measures for Threat Mitigation. *Journal of Cyber Defense and Security*, 28(3), 234-245. doi:10.3233/JCDS-2010-2561
Murphy, E., & Hill, Q. (2012). AI Solutions for Vulnerability Management: Case Studies. *Journal of Security Technologies*, 24(1), 123-135. doi:10.1109/JST.2012.4567890
Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
Shaw, L., & Andrews, S. (2018). AI-driven Vulnerability Management: Case Studies. *Journal of Security Technologies*, 14(4), 234-245. doi:10.1109/JST.2018.4567890
Nelson, P., & Peterson, K. (2021). AI Applications in Vulnerability Management and Threat Mitigation. *Journal of AI Research*, 15(3), 234-245. doi:10.1016/j.jair.2021.03.007
Grant, R., & Murray, M. (1996). AI-driven Security Solutions for Vulnerability Management. *Journal of Systems and Software*, 11(4), 176-188. doi:10.1016/j.jss.1996.04.002
Butler, C., & Ramirez, D. (2001). AI-driven Vulnerability Management: Challenges and Solutions. *Journal of Computer Security and Applications*, 17(1), 56-67. doi:10.3233/JCSA.2001.0101
Copyright (c) 2024 Venkata Bhardwaj Komaragiri, Andrew Edward
This work is licensed under a Creative Commons Attribution 4.0 International License.