The effect of fatty acid’s dielectric constant in the generation of surface plasmons using numerical attenuated total reflection (ATR)
Downloads
The surface plasmons were collective excitation of free charges which can be generated at the interface between metal and dielectrics. The active material was metal which provided free charges while dielectrics was passive material which maintained the electric fields at the interface. One of the most effective method to generate surface plasmons was attenuated total reflection (ATR). The basic concept of this method was total internal reflection. Hence, it required a high index prism, such as thallium halogenide. The ATR method can be done numerically by deriving ATR reflectivity. In the process of derivation, we should consider the reflectivity at the all involved interfaces. Then, the ATR reflectivity can be obtained by scanning frequency at the certain interval near the surface plasmon frequency. In this report, we study the surface plasmon which was generated at the interface between gold and fatty acid. We analysed the effect of fatty acid’s dielectric constant to the ATR spectroscopy. We found that the decrease of the fatty acid’s permittivity increase the surface plasmon resonance (SPR frequency and decrease the reflectivity at this resonance frequency.
Downloads
Borstel, G., Falge, H. J. and Otto, A., Solid State Physics: Springer Tracts in Modern Physics Vol. 4, Ed. By G. Hohler (Springer-Verlag Berlin Heidelberg GmbH, New York, 1974) 107-148.
Ferry, V. E., Sweatlock, L. A., Pacifici, D. and Atwater, H. A., , “Plasmonic nanostructure design for efficient light coupling into solar cells”, Nano Letters 8 4391, 2008. (doi: 10.1021/nl8022548).
Garnet, J. C. M., “Colours in metal glasses and in metallic films”, Phil. Trans. R. Soc. Lond. 203, 385,1904 (doi 10.1098/rsta.1904.0024)
Gunawan, V. and Stamps, R. L., “Surface and bulk polaritons in PML-type magnetoelectric multiferroic with canted spins: TE and TM polarisation”, J. Phys: Condens. Matter 23, 105901, 2011. (doi:10.1088/0953-8984/23/10/105901/meta).
Gunawan, V. and Widiyandari, H., “Polaritons in magnetoelectric multiferroics films: Switching magnon polaritons using an electric field”, Ferroelectrics 510, 16-26, 2017. (doi: 10.1080/00150193.2017.1326286).
Gunawan, V. and Umiati, N. A. K., “Phonon polaritons in magnetoelectric multiferroics film: the possibility to drive surface modes using magnetic field”, Can. J. Phys. 99, 150-158, 2021. (doi:10.1139/cjp-2020-0081).
Jensen, M. R. F., Parker, T. J., Abraha K. and Tilley, D. R., “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection”, Phys. Rev. Lett. 75, 3756, 1995. (doi: 10.1103/PhysRevLett.75.3756).
Jensen, M. R. F., Feiven, S. A., Parker, T. J. and Camley, R. E., “Experimental determination of magnetic polariton dispersion curves in FeF2”, J. Phys.: Condens Matter 9, 7223, 1997. (doi: 10.1103/PhysRevB.55.2745).
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolsky, V. A., and Zayats, A. V., “Plasmonic nanorod metamaterials for biosensing” Nat. Mat. 8, 867, 2010. (doi: 10.1038/nmat2546).
Kretschmann, E. and Raether, H., “Radiative decay of non radiative surface plasmon excited by light”, Z. Naturf. A 23 2135, 1968. (doi: 10.1515/zna-1968-1247).
Mie, G., “Contributions on the optics of turbid media, particularly coloidal metal solutions”, Ann. Phys. 25, 377,1908. (doi: 10.1002/andp.19083300302).
Nagpal, P., Lindquist, N. C., Oh, S. H. and Norris D. C., “Ultasmooth paterned metals for plasmonic metamaterials”, Science 325, 594, 2009, (doi: 10.1126/science 1174655).
O’Connor, D. and Zayats, A. V., “Data storage: The third plasmonic revolution”, Nat Nanotechnol 5 482, 2009. (doi:10.1038/nnano.2010.137)
Otto, A., “Excitation of nonradiative surface plasma waves by the method of frustated total reflection”, Z. Phys. 216 1530, 1968. (doi: 10.1007/BF01391532).
Torii, K, Koga, T., Sota, T., Azuhata, T., Chichibu, S. F. and Nakamura, S., “An atenuated total reflection study on the surface phonon polariton in GaN”, J. Phys.:Condens Matter 12, 7041, 2000. (doi: 10.1088/0953-8984/12/31/305).
Wood, R. W., “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Mag.4, 396, 1902. (doi: 10.1080/14786440209462857)
Zayats, A. V. and Smolyaninov, I. I., “Near-field photonics: surface plasmon polaritons and localized surface plasmons”, J. Opt. A.: Pure Appl. Opt 5 S16 (2003). (doi: 10.1088/1464-4258/5/4/353).
Zhang, J., Zhang, L. and Xu, W., “Surface plasmon polaritons: physics and applications”, J. Phys. D.: Appl. Phys. 48 113001, 2012. (doi: 10.1088/0022-3727/45/11/113001).
Copyright (c) 2023 Vincensius Gunawan
This work is licensed under a Creative Commons Attribution 4.0 International License.