Design of Rural Revitalization Model Classification System based on Machine Learning
Downloads
This study focuses on rural revitalization in different regions, collected data on different successful cases of rural revitalization, and built machine learning models based on these data. During the study, the collected raw data were first analyzed and processed to facilitate the training of the machine learning model. Subsequently, machine learning algorithms were utilized to train the data into the model, and then predicted results were compared with actual results to select the machine learning model that best matches the actual results. Textual data came from websites such as the Rural Revitalization Bureau. The primary aim of this study is to assist grassroots staff in initially determining revitalization strategies and providing certain locally feasible revitalization programs to promote subsequent work. The remainder of this paper is organized as follows: The second part introduces research on model structure, detailing research methods and theoretical knowledge. The third part presents the experimental procedure. The fourth part analyzes and summarizes experimental results.
Downloads
Xu Lin Hong. Research on Automatic Recognition of Citation Emotions Based on Machine Learning Algorithms: Taking the Field of Natural Language Processing as an Example. modern information, 2020,40(01)
Wang Ding. Analysis and research of natural language processing technology. Introduction to Scientific and Technological Innovation, 2020,17 (07): 141-142
Feng Xiaodi. Natural language processing techniques based on reinforcement learning. Digital World, 2020 (03): 9-10
Havlicek V ,Córcoles, Antonio D, Temme K ,et al.Supervised learning with quantum enhanced feature spaces[J]. 2018.DOI:10.1038/s41586-019-0980-2.
Dai Chengyingzi.Identification of successful entrepreneurs in rural areas based on machine learning[D], Master's Dissertation of Chongqing University of Technology,2022
Liu Zhiming, Liu Lu, Empirical Study on Chinese Weibo Emotion Classification Based on Machine Learning [J] Computer Engineering and Applications. 1002-8331 (2012) 01-0001-04
Use machine learning techniques to classify and predict the body density of states and chemical properties. AP. Mathematical compression.412: 126587, 2022.
Yang Jian Feng,Qiao Pei Rui,Li Yong Mei,Wang Ning. A Review of Machine Learning Classification Problems and Algorithm Research. Statistics & Decision. 1002-6487(2019)06-0036-05
Copyright (c) 2023 Pengcheng Yang, Zhan Wen, Cheng Zhang, Xiaoming Zhang, Dehao Ren
This work is licensed under a Creative Commons Attribution 4.0 International License.