The Simulation of The Propagation of Electromagnetic Waves Through a Material with Various Thicknesses Using Finite Difference Time Domain (FDTD)
Downloads
A finite difference time domain method in one dimension (1D-FDTD) is employed to study the properties of the propagation of electromagnetic waves across a medium with finite thicknesses. In this paper, we simulated the propagation of a Gaussian pulse. Since we simulated in one dimension, the absorbing boundary condition (ABC) can be applied to minimize undesirable reflection which generated at the numerical boundaries. We also implemented total field / scattering field (TF/SF) to ensure the source propagated in only one direction. The analysis performed by inserting the object with both relative permittivity and permeability values higher than one decreased the pulse’s amplitude.
Downloads
Gao. S., , Li, W. L. and Sambell.A., , “FDTD Analysis of Dual-Frequency Microstrip Patch Antenna”, Progress In Electromagnetic Research 54, 155-178, 2005. (doi: 10.1049/ip-map:20010225)
Lee, K. H., Chen, C. C., Teixeira, F. L. and Lee, R.,”Modelling and Investigation of a Geometrically Complex UWB GPR Antennna using FDTD”, IEEE Transaction on Antennas and Propagation 52, 1983, 2004 (doi:10.1109/TAP.2004.832501)
Xie, Y., Rodriguez, S., Zhang, W., Liu, Z. and Yin, W.,“Simulation of Electromagnetic Acoustic Transducer Array by Using Analytical Method and FDTD”, Journal of Sensors 2016, 1, 2016. (doi 10.1155/2016/5451821).
Giannakis, I., Giannopoulos, A. and Warren, C., “A Realistic FDTD Numerical Modeling Framework of Ground Penetrating Radar for Landmine Detection”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 9, 37-50, 2016, (doi: 10.1109/JSTARS.2015.2468597).
Mirza, A. F., Abdussalan, R., Asif, R., Darma, Y. A. S., Abussita, M. M., Elmegri, F., Abd-Alhamed, R. A., Noras, J. M.,and Qahwaji, R.,” Breast Cancer Detection using 1D, 2D and 3D FDTD Numerical Methods”., 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing, Liverpool, UK, 2015, pp. 1042-1045.(doi: 10.1109/CIT/IUCC/DASC/PICOM.2015.158).
Yee, K. S., “Numerical Solution of Initial Boundary Value Problems Involving Maxwell’s Equations in Isotropic media”, IEEE Trans. Antennas Propagat.14, 302-307, 1966. (doi: 10.1109/TAP.1966.1138693).
Copyright (c) 2023 Vincensius Gunawan
This work is licensed under a Creative Commons Attribution 4.0 International License.