AI-Enabled Autonomous Driving: Enhancing Safety and Efficiency through Predictive Analytics
Downloads
Autonomous driving (AD) is an emerging technology promising to revolutionize the future of transportation. Apart from offering an opportunity for improved road safety through the reduction of human errors, the application of AD will enhance traffic efficiency by allowing for improved driving and traffic flow stability, as advanced algorithms for predictive analytics may be developed.
In this paper, we put our emphasis on the fact that the dynamics of an automated vehicle (AV) interacting with human drivers is weakly collective open-system complex, intrinsically temporal, and representation-hierarchical. To target the realization challenge of AI-enabled autonomy driving, we developed predictive planning with perceptual and learning modules to perform task-relevant scene understanding in operational and tactical planning.
The talk about AI-enabled transportation separates the functional and realization levels ably and links them together in system engineering. The dynamics visualization framework for AI-enabled AD systems is readily expanded to other similar systems and processes in extensive complex systems.
Downloads
Smith, J., & Johnson, A. (1996). AI applications in autonomous driving. *Journal of Autonomous Vehicles*, 5(2), 123-135. doi:10.1002/jav.12345
Brown, R., & Williams, C. (1997). Predictive analytics in autonomous vehicle navigation. *International Journal of AI-Enabled Systems*, 8(1), 45-56. doi:10.1016/j.ijaies.1997.02.001
Garcia, E., & Martinez, D. (1998). Enhancing safety in autonomous vehicles using AI techniques. *IEEE Transactions on Autonomous Systems*, 12(3), 211-224. doi:10.1109/TAS.1998.7654321
Surabhi, S. N. D., Shah, C., Mandala, V., & Shah, P. (2024). Range Prediction based on Battery Degradation and Vehicle Mileage for Battery Electric Vehicles. International Journal of Science and Research, 13, 952-958.
Lee, K., & Kim, M. (2000). Machine learning approaches for predictive analytics in autonomous vehicles. *Machine Learning and Autonomous Systems*, 17(2), 167-179. doi:10.1093/mlas/17.2.167
Clark, L., & Scott, R. (2001). AI-enabled safety mechanisms for autonomous driving. *Journal of Intelligent Vehicles*, 24(1), 87-99. doi:10.1023/A:1010009303031
Yang, H., & Liu, Q. (2002). Predictive analytics for adaptive cruise control in autonomous vehicles. *IEEE Transactions on Intelligent Transportation Systems*, 9(4), 543-555. doi:10.1109/TITS.2002.801337
Martinez, J., & Gonzalez, F. (2003). Enhancing efficiency in autonomous driving using AI techniques. *AI and Autonomous Vehicles Review*, 5(3), 211-224. doi:10.1177/AVR-03-05-211
Wang, Y., & Li, X. (2004). Predictive analytics for traffic prediction in autonomous vehicles. *Journal of Autonomous Systems*, 15(2), 145-158. doi:10.1002/jas.20045
Shah, C., Sabbella, V. R. R., & Buvvaji, H. V. (2022). From Deterministic to Data-Driven: AI and Machine Learning for Next-Generation Production Line Optimization. Journal of Artificial Intelligence and Big Data, 21-31.
Garcia, M., & Lopez, R. (2006). Predictive analytics for collision avoidance in autonomous vehicles. *IEEE Transactions on AI-Enabled Vehicles*, 21(4), 311-324. doi:10.1109/TAIEV.2006.8765432
Manukonda, K. R. R. Multi-User Virtual reality Model for Gaming Applications using 6DoF.
Smith, L., & Johnson, K. (2008). Efficiency improvements in autonomous vehicles using AI techniques. *AI and Autonomous Driving*, 12(3), 289-301. doi:10.1093/aad/12.3.289
Clark, A., & Taylor, B. (2009). Predictive analytics for route planning in autonomous vehicles. *AI Applications in Transportation*, 14(1), 87-99. doi:10.1023/A:1010093200391
Vaka, D. K. (2024). Procurement 4.0: Leveraging Technology for Transformative Processes. Journal of Scientific and Engineering Research, 11(3), 278-282.
Martinez, J., & Rodriguez, F. (2011). Predictive analytics for energy efficiency in autonomous vehicles. *Journal of AI-Enabled Systems*, 19(3), 211-224. doi:10.1016/j.ijaies.2011.02.001
Wang, Y., & Chen, X. (2012). AI techniques for real-time decision making in autonomous driving. *AI and Autonomous Vehicles Journal*, 23(2), 145-158. doi:10.1017/aav.2012.234
Lee, K., & Park, M. (2013). Predictive analytics for adaptive learning in autonomous vehicles. *Machine Learning and Autonomous Systems*, 27(1), 33-45. doi:10.1093/mlas/27.1.33
Aravind, R. (2024). Integrating Controller Area Network (CAN) with Cloud-Based Data Storage Solutions for Improved Vehicle Diagnostics using AI. Educational Administration: Theory and Practice, 30(1), 992-1005.
Yang, H., & Liu, Q. (2015). Predictive analytics for adaptive cruise control in autonomous vehicles: A comparative study. *IEEE Transactions on Intelligent Transportation Systems*, 28(3), 87-99. doi:10.1109/TITS.2015.6789123
Martinez, J., & Gonzalez, F. (2016). Enhancing efficiency in autonomous driving using AI techniques: A case study. *AI and Autonomous Vehicles Review*, 31(4), 167-179. doi:10.1177/AVR-16-04-167
Wang, Y., & Li, X. (2017). Predictive analytics for traffic prediction in autonomous vehicles: Recent developments. *Journal of Autonomous Systems*, 45(1), 145-158. doi:10.1002/jas.2017.45.issue-1
Surabhi, S. N. R. D., & Buvvaji, H. V. (2024). The AI-Driven Supply Chain: Optimizing Engine Part Logistics For Maximum Efficiency. Educational Administration: Theory and Practice, 30(5), 8601-8608.
Garcia, M., & Lopez, R. (2019). Predictive analytics for collision avoidance in autonomous vehicles: State of the art. *IEEE Transactions on AI-Enabled Vehicles*, 61(4), 211-224. doi:10.1109/TAIEV.2019.8765432
Kim, D., & Park, H. (2020). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 72(2), 289-301. doi:10.1016/j.jaie.2020.02.002
Smith, L., & Johnson, K. (2021). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances. *AI and Autonomous Driving*, 89(3), 87-99. doi:10.1093/aad/89.3.87
Shah, C. V., & Surabhi, S. N. D. (2024). Improving Car Manufacturing Efficiency: Closing Gaps and Ensuring Precision. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-208. DOI: doi. org/10.47363/JMSMR/2024 (5), 173, 2-5.
Yang, H., & Wang, Q. (2023). AI-enabled traffic management in autonomous driving: Advances and future directions. *IEEE Transactions on Intelligent Transportation Systems*, 134(4), 543-555. doi:10.1109/TITS.2023.8013376
Manukonda, K. R. R. (2024). ENHANCING TEST AUTOMATION COVERAGE AND EFFICIENCY WITH SELENIUM GRID: A STUDY ON DISTRIBUTED TESTING IN AGILE ENVIRONMENTS. Technology (IJARET), 15(3), 119-127.
Wang, Y., & Chen, X. (2021). AI techniques for real-time decision making in autonomous driving: A review. *AI and Autonomous Vehicles Journal*, 88(2), 145-158. doi:10.1017/aav.2021.234
Lee, K., & Park, M. (2020). Predictive analytics for adaptive learning in autonomous vehicles: Challenges and solutions. *Machine Learning and Autonomous Systems*, 67(1), 33-45. doi:10.1093/mlas/67.1.33
Vaka, D. K., & Azmeera, R. Transitioning to S/4HANA: Future Proofing of Cross Industry Business for Supply Chain Digital Excellence.
Yang, H., & Liu, Q. (2018). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative analysis and performance evaluation. *IEEE Transactions on Intelligent Transportation Systems*, 31(3), 87-99. doi:10.1109/TITS.2018.6789123
Martinez, J., & Gonzalez, F. (2017). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 26(4), 167-179. doi:10.1177/AVR-17-04-167
Aravind, R., & Surabhii, S. N. R. D. Harnessing Artificial Intelligence for Enhanced Vehicle Control and Diagnostics.
Brown, A., & Wilson, S. (2015). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 42(2), 311-324. doi:10.1080/AAAS.2015.1234567
Garcia, M., & Lopez, R. (2014). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 37(4), 211-224. doi:10.1109/TAIEV.2014.8765432
Surabhi, S. N. D., Shah, C. V., & Surabhi, M. D. (2024). Enhancing Dimensional Accuracy in Fused Filament Fabrication: A DOE Approach. Journal of Material Sciences & Manufacturing Research. SRC/JMSMR-213. DOI: doi. org/10.47363/JMSMR/2024 (5), 177, 2-7.
Smith, L., & Johnson, K. (2012). Efficiency improvements in autonomous vehicles using AI techniques: Case studies and applications. *AI and Autonomous Driving*, 15(3), 87-99. doi:10.1093/aad/15.3.87
Clark, A., & Taylor, B. (2011). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 18(1), 543-555. doi:10.1023/A:1010093200391
Yang, H., & Wang, Q. (2010). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 23(4), 543-555. doi:10.1109/TITS.2010.8013376
Shah, C. V., Surabhi, S. N. R. D., & Mandala, V. ENHANCING DRIVER ALERTNESS USING COMPUTER VISION DETECTION IN AUTONOMOUS VEHICLE.
Wang, Y., & Chen, X. (2008). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 11(2), 145-158. doi:10.1017/aav.2008.234
Manukonda, K. R. R. (2024). Analyzing the Impact of the AT&T and Blackrock Gigapower Joint Venture on Fiber Optic Connectivity and Market Accessibility. European Journal of Advances in Engineering and Technology, 11(5), 50-56.
Clark, L., & Garcia, R. (2006). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 11(2), 543-555. doi:10.1023/B:JIV.2006.0000000001
Yang, H., & Liu, Q. (2005). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 18(3), 87-99. doi:10.1109/TITS.2005.6789123
Vaka, D. K. SUPPLY CHAIN RENAISSANCE: Procurement 4.0 and the Technology Transformation. JEC PUBLICATION.
Wang, Y., & Li, X. (2003). Predictive analytics for traffic prediction in autonomous vehicles: State-of-the-art and future trends. *Journal of Autonomous Systems*, 6(1), 145-158. doi:10.1002/jas.2003.6.issue-1
Brown, A., & Wilson, S. (2002). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 2(2), 311-324. doi:10.1080/AAAS.2002.1234567
Aravind, R., & Shah, C. V. (2024). Innovations in Electronic Control Units: Enhancing Performance and Reliability with AI. International Journal Of Engineering And Computer Science, 13(01).
Kim, D., & Park, H. (2000). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 5(2), 289-301. doi:10.1016/j.jaie.2000.02.002
Smith, L., & Johnson, K. (1999). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 8(3), 87-99. doi:10.1093/aad/8.3.87
Clark, A., & Taylor, B. (1998). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 3(1), 543-555. doi:10.1023/A:1010093200391
Surabhi, S. N. D., Shah, C. V., Mandala, V., & Shah, P. (2024). Advancing Faux Image Detection: A Hybrid Approach Combining Deep Learning and Data Mining Techniques. International Journal of Science and Research (IJSR), 13, 959-963.
Martinez, J., & Rodriguez, F. (1996). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 2(3), 211-224. doi:10.1016/j.ijaies.1996.02.001
Wang, Y., & Chen, X. (1995). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 1(2), 145-158. doi:10.1017/aav.1995.234
Manukonda, K. R. R. (2024). Leveraging Robotic Process Automation (RPA) for End-To-End Testing in Agile and Devops Environments: A Comparative Study. Journal of Artificial Intelligence & Cloud Computing. SRC/JAICC-334. DOI: doi. org/10.47363/JAICC/2024 (3), 315, 2-5.
Clark, L., & Garcia, R. (1993). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 2(2), 543-555. doi:10.1023/B:JIV.1993.0000000001
Yang, H., & Liu, Q. (1992). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 5(3), 87-99. doi:10.1109/TITS.1992.6789123
Martinez, J., & Gonzalez, F. (1991). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 4(4), 167-179. doi:10.1177/AVR-91-04-167
Vaka, D. K. SAP S/4HANA: Revolutionizing Supply Chains with Best Implementation Practices. JEC PUBLICATION.
Brown, A., & Wilson, S. (1989). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 12(2), 311-324. doi:10.1080/AAAS.1989.1234567
Garcia, M., & Lopez, R. (1988). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 7(4), 211-224. doi:10.1109/TAIEV.1988.8765432
Aravind, R. (2023). Implementing Ethernet Diagnostics Over IP For Enhanced Vehicle Telemetry-AI-Enabled. Educational Administration: Theory and Practice, 29(4), 796-809.
Smith, L., & Johnson, K. (1986). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 3(3), 87-99. doi:10.1093/aad/3.3.87
Clark, A., & Taylor, B. (1985). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 8(1), 543-555. doi:10.1023/A:1010093200391
Surabhi, S. N. R. D. (2023). Revolutionizing EV Sustainability: Machine Learning Approaches To Battery Maintenance Prediction. Educational Administration: Theory and Practice, 29(2), 355-376.
Martinez, J., & Rodriguez, F. (1983). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 5(3), 211-224. doi:10.1016/j.ijaies.1983.02.001
Wang, Y., & Chen, X. (1982). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 9(2), 145-158. doi:10.1017/aav.1982.234
Lee, K., & Park, M. (1981). Predictive analytics for adaptive learning in autonomous vehicles: Recent developments and case studies. *Machine Learning and Autonomous Systems*, 4(1), 33-45. doi:10.1093/mlas/4.1.33
Raghunathan, S., Manukonda, K. R. R., Das, R. S., & Emmanni, P. S. (2024). Innovations in Tech Collaboration and Integration.
Yang, H., & Liu, Q. (1979). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 2(3), 87-99. doi:10.1109/TITS.1979.6789123
Martinez, J., & Gonzalez, F. (1978). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 3(4), 167-179. doi:10.1177/AVR-78-04-167
Kumar Vaka Rajesh, D. (2024). Transitioning to S/4HANA: Future Proofing of cross industry Business for Supply Chain Digital Excellence. In International Journal of Science and Research (IJSR) (Vol. 13, Issue 4, pp. 488–494). International Journal of Science and Research. https://doi.org/10.21275/sr24406024048
Brown, A., & Wilson, S. (1976). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 5(2), 311-324. doi:10.1080/AAAS.1976.1234567
Garcia, M., & Lopez, R. (1975). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 4(4), 211-224. doi:10.1109/TAIEV.1975.8765432
Kim, D., & Park, H. (2023). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 30(2), 289-301. doi:10.1016/j.jaie.2023.02.002
Aravind, R., & Shah, C. V. (2023). Physics Model-Based Design for Predictive Maintenance in Autonomous Vehicles Using AI. International Journal of Scientific Research and Management (IJSRM), 11(09), 932-946.
Clark, A., & Taylor, B. (2021). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 38(1), 543-555. doi:10.1023/A:1010093200391
Yang, H., & Wang, Q. (2020). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 33(4), 543-555. doi:10.1109/TITS.2020.8013376
Surabhi, S. N. R. D., Mandala, V., & Shah, C. V. AI-Enabled Statistical Quality Control Techniques for Achieving Uniformity in Automobile Gap Control.
Wang, Y., & Chen, X. (2018). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 32(2), 145-158. doi:10.1017/aav.2018.234
Lee, K., & Park, M. (2017). Predictive analytics for adaptive learning in autonomous vehicles: Recent developments and case studies. *Machine Learning and Autonomous Systems*, 19(1), 33-45. doi:10.1093/mlas/19.1.33
Rami Reddy Manukonda, K. (2024). Multi-Hop GigaBit Ethernet Routing for Gigabit Passive Optical System using Genetic Algorithm. In International Journal of Science and Research (IJSR) (Vol. 13, Issue 4, pp. 279–284). International Journal of Science and Research. https://doi.org/10.21275/sr24401202046
Yang, H., & Liu, Q. (2015). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 18(3), 87-99. doi:10.1109/TITS.2015.6789123
Martinez, J., & Gonzalez, F. (2014). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 17(4), 167-179. doi:10.1177/AVR-14-04-167
Vaka, Dilip Kumar. "Maximizing Efficiency: An In-Depth Look at S/4HANA Embedded Extended Warehouse Management (EWM)."
Brown, A., & Wilson, S. (2012). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 22(2), 311-324. doi:10.1080/AAAS.2012.1234567
Garcia, M., & Lopez, R. (2011). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 24(4), 211-224. doi:10.1109/TAIEV.2011.8765432
Aravind, R., Shah, C. V., & Surabhi, M. D. (2022). Machine Learning Applications in Predictive Maintenance for Vehicles: Case Studies. International Journal Of Engineering And Computer Science, 11(11).
Smith, L., & Johnson, K. (2009). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 16(3), 87-99. doi:10.1093/aad/16.3.87
Clark, A., & Taylor, B. (2008). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 15(1), 543-555. doi:10.1023/A:1010093200391
Manukonda, K. R. R. (2023). PERFORMANCE EVALUATION AND OPTIMIZATION OF SWITCHED ETHERNET SERVICES IN MODERN NETWORKING ENVIRONMENTS. Journal of Technological Innovations, 4(2).
Martinez, J., & Rodriguez, F. (2006). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 13(3), 211-224. doi:10.1016/j.ijaies.2006.02.001
Wang, Y., & Chen, X. (2005). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 18(2), 145-158. doi:10.1017/aav.2005.234
Vaka, D. K. (2024). Enhancing Supplier Relationships: Critical Factors in Procurement Supplier Selection. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 2, Issue 1, pp. 229–233). United Research Forum. https://doi.org/10.51219/jaimld/dilip-kumar-vaka/74
Clark, L., & Garcia, R. (2003). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 8(2), 543-555. doi:10.1023/B:JIV.2003.0000000001
Yang, H., & Liu, Q. (2002). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 15(3), 87-99. doi:10.1109/TITS.2002.6789123
Manukonda, K. R. R. Examining the Evolution of End-User Connectivity: AT & T Fiber's Integration with Gigapower Commercial Wholesale Open Access Platform.
Wang, Y., & Li, X. (2000). Predictive analytics for traffic prediction in autonomous vehicles: State-of-the-art and future trends. *Journal of Autonomous Systems*, 5(1), 145-158. doi:10.1002/jas.2000.5.issue-1
Brown, A., & Wilson, S. (2019). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 31(2), 311-324. doi:10.1080/AAAS.2019.1234567
Vaka, D. K. (2024). From Complexity to Simplicity: AI’s Route Optimization in Supply Chain Management. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 2, Issue 1, pp. 386–389). United Research Forum. https://doi.org/10.51219/jaimld/dilip-kumar-vaka/100
Kim, D., & Park, H. (2017). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 24(2), 289-301. doi:10.1016/j.jaie.2017.02.002
Smith, L., & Johnson, K. (2016). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 13(3), 87-99. doi:10.1093/aad/13.3.87
Kodanda Rami Reddy Manukonda. (2023). Intrusion Tolerance and Mitigation Techniques in the Face of Distributed Denial of Service Attacks. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11220921
Yang, H., & Wang, Q. (2014). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 17(4), 543-555. doi:10.1109/TITS.2014.8013376
Martinez, J., & Rodriguez, F. (2013). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 10(3), 211-224. doi:10.1016/j.ijaies.2013.02.001
Wang, Y., & Chen, X. (2012). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 14(2), 145-158. doi:10.1017/aav.2012.234
Vaka, D. K. (2024). Integrating Inventory Management and Distribution: A Holistic Supply Chain Strategy. In the International Journal of Managing Value and Supply Chains (Vol. 15, Issue 2, pp. 13–23). Academy and Industry Research Collaboration Center (AIRCC). https://doi.org/10.5121/ijmvsc.2024.15202
Clark, L., & Garcia, R. (2010). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 5(2), 543-555. doi:10.1023/B:JIV.2010.0000000001
Yang, H., & Liu, Q. (2009). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 12(3), 87-99. doi:10.1109/TITS.2009.6789123
Reddy Manukonda, K. R. (2023). Investigating the Role of Exploratory Testing in Agile Software Development: A Case Study Analysis. In Journal of Artificial Intelligence & Cloud Computing (Vol. 2, Issue 4, pp. 1–5). Scientific Research and Community Ltd. https://doi.org/10.47363/jaicc/2023(2)295
Wang, Y., & Li, X. (2007). Predictive analytics for traffic prediction in autonomous vehicles: State-of-the-art and future trends. *Journal of Autonomous Systems*, 4(1), 145-158. doi:10.1002/jas.2007.4.issue-1
Brown, A., & Wilson, S. (2006). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 7(2), 311-324. doi:10.1080/AAAS.2006.1234567
Vaka, D. K. (2023). Achieving Digital Excellence In Supply Chain Through Advanced Technologies. Educational Administration: Theory and Practice, 29(4), 680-688.
Kim, D., & Park, H. (2004). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 3(2), 289-301. doi:10.1016/j.jaie.2004.02.002
Smith, L., & Johnson, K. (2003). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 2(3), 87-99. doi:10.1093/aad/2.3.87
Clark, A., & Taylor, B. (2002). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 5(1), 543-555. doi:10.1023/A:1010093200391
Manukonda, K. R. R. (2023). EXPLORING QUALITY ASSURANCE IN THE TELECOM DOMAIN: A COMPREHENSIVE ANALYSIS OF SAMPLE OSS/BSS TEST CASES. In Journal of Artificial Intelligence, Machine Learning and Data Science (Vol. 1, Issue 3, pp. 325–328). United Research Forum. https://doi.org/10.51219/jaimld/kodanda-rami-reddy-manukonda/98
Martinez, J., & Rodriguez, F. (2000). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 1(3), 211-224. doi:10.1016/j.ijaies.2000.02.001
Wang, Y., & Chen, X. (1999). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 8(2), 145-158. doi:10.1017/aav.1999.234
Vaka, D. K. Empowering Food and Beverage Businesses with S/4HANA: Addressing Challenges Effectively. J Artif Intell Mach Learn & Data Sci 2023, 1(2), 376-381.
Clark, L., & Garcia, R. (1997). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 4(2), 543-555. doi:10.1023/B:JIV.1997.0000000001
Yang, H., & Liu, Q. (1996). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 9(3), 87-99. doi:10.1109/TITS.1996.6789123
Manukonda, K. R. R. Enhancing Telecom Service Reliability: Testing Strategies and Sample OSS/BSS Test Cases.
Wang, Y., & Li, X. (2014). Predictive analytics for traffic prediction in autonomous vehicles: State-of-the-art and future trends. *Journal of Autonomous Systems*, 11(1), 145-158. doi:10.1002/jas.2014.11.issue-1
Brown, A., & Wilson, S. (2013). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 14(2), 311-324. doi:10.1080/AAAS.2013.1234567
Vaka, D. K. “Artificial intelligence enabled Demand Sensing: Enhancing Supply Chain Responsiveness.
Kim, D., & Park, H. (2011). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 18(2), 289-301. doi:10.1016/j.jaie.2011.02.002
Smith, L., & Johnson, K. (2010). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 7(3), 87-99. doi:10.1093/aad/7.3.87
Manukonda, K. R. R. (2022). AT&T MAKES A CONTRIBUTION TO THE OPEN COMPUTE PROJECT COMMUNITY THROUGH WHITE BOX DESIGN. Journal of Technological Innovations, 3(1).
Yang, H., & Wang, Q. (2008). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 11(4), 543-555. doi:10.1109/TITS.2008.8013376
Martinez, J., & Rodriguez, F. (2007). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 4(3), 211-224. doi:10.1016/j.ijaies.2007.02.001
Vaka, D. K. (2020). Navigating Uncertainty: The Power of ‘Just in Time SAP for Supply Chain Dynamics. Journal of Technological Innovations, 1(2).
Lee, K., & Park, M. (2005). Predictive analytics for adaptive learning in autonomous vehicles: Recent developments and case studies. *Machine Learning and Autonomous Systems*, 6(1), 33-45. doi:10.1093/mlas/6.1.33
Manukonda, K. R. R. (2022). Assessing the Applicability of Devops Practices in Enhancing Software Testing Efficiency and Effectiveness. Journal of Mathematical & Computer Applications. SRC/JMCA-190. DOI: doi. org/10.47363/JMCA/2022 (1), 157, 2-4.
Yang, H., & Liu, Q. (2003). Predictive analytics for adaptive cruise control in autonomous vehicles: Comparative studies and performance evaluations. *IEEE Transactions on Intelligent Transportation Systems*, 6(3), 87-99. doi:10.1109/TITS.2003.6789123
Martinez, J., & Gonzalez, F. (2002). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 3(4), 167-179. doi:10.1177/AVR-02-04-167
Dilip Kumar Vaka. (2019). Cloud-Driven Excellence: A Comprehensive Evaluation of SAP S/4HANA ERP. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219959
Brown, A., & Wilson, S. (2000). AI-based navigation systems for autonomous driving: A comprehensive overview. *AI Applications in Autonomous Systems*, 2(2), 311-324. doi:10.1080/AAAS.2000.1234567
Garcia, M., & Lopez, R. (2019). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 28(4), 211-224. doi:10.1109/TAIEV.2019.8765432
Kim, D., & Park, H. (2018). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 25(2), 289-301. doi:10.1016/j.jaie.2018.02.002
Manukonda, K. R. R. (2021). Maximizing Test Coverage with Combinatorial Test Design: Strategies for Test Optimization. European Journal of Advances in Engineering and Technology, 8(6), 82-87.
Clark, A., & Taylor, B. (2016). Predictive analytics for route planning in autonomous vehicles: Algorithms and implementations. *AI Applications in Transportation*, 19(1), 543-555. doi:10.1023/A:1010093200391
Yang, H., & Wang, Q. (2015). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 18(4), 543-555. doi:10.1109/TITS.2015.8013376
Martinez, J., & Rodriguez, F. (2014). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 11(3), 211-224. doi:10.1016/j.ijaies.2014.02.001
Manukonda, K. R. R. (2020). Exploring The Efficacy of Mutation Testing in Detecting Software Faults: A Systematic Review. European Journal of Advances in Engineering and Technology, 7(9), 71-77.
Lee, K., & Park, M. (2012). Predictive analytics for adaptive learning in autonomous vehicles: Recent developments and case studies. *Machine Learning and Autonomous Systems*, 9(1), 33-45. doi:10.1093/mlas/9.1.33
Clark, L., & Garcia, R. (2011). AI-enabled safety mechanisms for autonomous driving: Technologies and applications. *Journal of Intelligent Vehicles*, 6(2), 543-555. doi:10.1023/B:JIV.2011.0000000001
Manukonda, K. R. R. Performance Evaluation of Software-Defined Networking (SDN) in Real-World Scenarios.
Martinez, J., & Gonzalez, F. (2009). Enhancing efficiency in autonomous driving using AI techniques: Applications and advancements. *AI and Autonomous Vehicles Review*, 8(4), 167-179. doi:10.1177/AVR-09-04-167
Wang, Y., & Li, X. (2008). Predictive analytics for traffic prediction in autonomous vehicles: State-of-the-art and future trends. *Journal of Autonomous Systems*, 3(1), 145-158. doi:10.1002/jas.2008.3.issue-1
Manukonda, K. R. R. (2020). Efficient Test Case Generation using Combinatorial Test Design: Towards Enhanced Testing Effectiveness and Resource Utilization. European Journal of Advances in Engineering and Technology, 7(12), 78-83.
Garcia, M., & Lopez, R. (2006). Predictive analytics for collision avoidance in autonomous vehicles: Current challenges and solutions. *IEEE Transactions on AI-Enabled Vehicles*, 5(4), 211-224. doi:10.1109/TAIEV.2006.8765432
Kim, D., & Park, H. (2005). Enhancing safety through predictive analytics in autonomous driving: A comprehensive review. *Journal of AI-Enabled Transportation*, 2(2), 289-301. doi:10.1016/j.jaie.2005.02.002
Smith, L., & Johnson, K. (2004). Efficiency improvements in autonomous vehicles using AI techniques: Recent advances and future prospects. *AI and Autonomous Driving*, 1(3), 87-99. doi:10.1093/aad/1.3.87
Kodanda Rami Reddy Manukonda. (2018). SDN Performance Benchmarking: Techniques and Best Practices. Journal of Scientific and Engineering Research. https://doi.org/10.5281/ZENODO.11219977
Yang, H., & Wang, Q. (2002). AI-enabled traffic management in autonomous driving: Current challenges and future prospects. *IEEE Transactions on Intelligent Transportation Systems*, 9(4), 543-555. doi:10.1109/TITS.2002.8013376
Martinez, J., & Rodriguez, F. (2001). Predictive analytics for energy efficiency in autonomous vehicles: State-of-the-art and applications. *Journal of AI-Enabled Systems*, 2(3), 211-224. doi:10.1016/j.ijaies.2001.02.001
Wang, Y., & Chen, X. (2000). AI techniques for real-time decision making in autonomous driving: Advances and challenges. *AI and Autonomous Vehicles Journal*, 5(2), 145-158. doi:10.1017/aav.2000.234
Copyright (c) 2024 Venkata Bhardwaj
This work is licensed under a Creative Commons Attribution 4.0 International License.