Integrating AI and RPA in Pega for Intelligent Process Automation: A Comparative Study

Artificial Intelligence (AI), Robotic Process Automation (RPA), Pega, Intelligent Process Automation (IPA), Machine Learning (ML), Natural Language Processing (NLP), Predictive Analytics, Workflow Automation, Cognitive Automation, Digital Transformation, Process Efficiency.

Authors

Vol. 12 No. 06 (2024)
Engineering and Computer Science
June 30, 2024

Downloads

The integration of Artificial Intelligence (AI) and Robotic Process Automation (RPA) within Pega’s Intelligent Process Automation (IPA) framework is fundamentally transforming enterprise workflow management. Traditional RPA, while effective in automating repetitive, rule-based tasks, lacks the adaptability and cognitive capabilities required for handling dynamic business processes. AI-enhanced RPA, on the other hand, leverages machine learning (ML), natural language processing (NLP), predictive analytics, and decision-making algorithms to enable self-learning automation systems that optimize workflows, reduce errors, and improve operational efficiency.

This study conducts a comparative analysis between traditional RPA and AI-powered RPA within the Pega ecosystem, focusing on key performance indicators (KPIs) such as process execution time, accuracy, cost-effectiveness, scalability, and adaptability. By evaluating empirical data from real-world implementations, this research identifies the tangible benefits of AI-enhanced RPA in automating complex business operations across industries such as finance, healthcare, and e-commerce. The comparative assessment is structured around efficiency gains, error reduction, financial viability, and scalability, providing quantifiable insights into the transformative potential of AI-driven process automation.

Using real-world case studies and industry benchmarks, this study demonstrates how AI-enabled automation in Pega improves workflow orchestration, predictive decision-making, and end-to-end automation of critical business functions. AI-powered bots can analyze data, predict process bottlenecks, automate exception handling, and enhance customer interactions, thereby surpassing the limitations of traditional RPA.

The findings from this research emphasize the strategic advantages of AI-enhanced RPA in digital transformation efforts. Organizations that integrate AI-powered IPA within their automation strategies gain a competitive edge by achieving greater operational efficiency, reducing costs, and enabling scalable, intelligent automation solutions that adapt to changing business needs. This paper provides actionable recommendations for enterprises looking to leverage AI in Pega-driven automation frameworks, ensuring a seamless transition from rule-based automation to intelligent, self-optimizing workflows.

Ultimately, the study concludes that AI-driven RPA in Pega is not just an incremental improvement over traditional RPA but represents a paradigm shift toward autonomous and cognitive automation, setting a new standard for enterprise-level process management.