Advancements in the application of modified biochar for the removal of heavy metals and organic pollutants: short review
Downloads
Water pollution, primarily caused by heavy metals and organic pollutants, poses a significant threat to environmental and public health. Traditional water treatment technologies, while effective, often face limitations such as high costs and secondary pollution. This review explores the advancements in the application of modified biochar for the removal of heavy metals and organic pollutants from contaminated water. We begin by discussing the various preparation methods of biochar, emphasizing the modifications that enhance its adsorption capabilities. The use of biochar in adsorptive removal of heavy metals is examined, highlighting the mechanisms and efficiencies involved. Additionally, the role of biochar-based adsorbents in the removal of organic pollutants is analyzed, focusing on adsorption processes and the incorporation of photocatalytic properties. The review also delves into biochar-based catalysts in sulfate radical-based advanced oxidation processes (AOPs), showcasing their potential in degrading complex organic pollutants. Furthermore, the application of biochar-based adsorbents in binary pollutant systems is reviewed, providing insights into their multifunctional capabilities. The paper concludes with future perspectives, suggesting pathways for further research and development to enhance the effectiveness and applicability of biochar in water treatment technologies. The findings underscore the promise of modified biochar as a versatile and sustainable solution for mitigating water pollution
Downloads
Yusuff, A. S., Lala, M. A., Thompson-Yusuff, K. A., & Babatunde, E. O. (2022). ZnCl2-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr (VI) from aqueous solutions. South African Journal of Chemical Engineering, 42, 138-145
Kang, X., Geng, N., Li, Y., Li, X., Yu, J., Gao, S., ... & Lou, Y. (2022). Treatment of cadmium and zinc-contaminated water systems using modified biochar: Contaminant uptake, adsorption ability, and mechanism. Bioresource Technology, 363, 127817
Cui, S., Gao, S., Zhang, F., Fu, Q., Wang, M., Liu, D., ... & Chen, P. (2021). Heavy metal contamination and ecological risk in sediment from typical suburban rivers. River Research and Applications, 37(8), 1080-1088.
Ge, J., Zhang, C., Sun, Y. C., Zhang, Q., Lv, M. W., Guo, K., & Li, J. L. (2019). Cadmium exposure triggers mitochondrial dysfunction and oxidative stress in chicken (Gallus gallus) kidney via mitochondrial UPR inhibition and Nrf2-mediated antioxidant defense activation. Science of The Total Environment, 689, 1160-1171
Naik, R. L., Kumar, M. R., & Narsaiah, T. B. (2023). Removal of heavy metals (Cu & Ni) from wastewater using rice husk and orange peel as adsorbents. Materials Today: Proceedings, 72, 92-98
Sun, Y., Gu, Y., Li, M., Wang, H., Hu, C., & Lyu, L. (2024). Fast elimination of emerging contaminates in complicated water environment medium over the resource conversion product of chicken manure biochar triggered by peroxymonosulfate. Carbon Research, 3(1), 1-13
Xiang, Y., Xu, Z., Zhou, Y., Wei, Y., Long, X., He, Y., Zhi, D., Yang, J., Luo, L., 2019. A sustainable ferromanganese biochar adsorbent for effective levofloxacin removal from aqueous medium. Chemosphere 237, 124464
Ashoori, N., Teixido, M., Spahr, S., LeFevre, G.H., Sedlak, D.L., Luthy, R.G., 2019. Evaluation of pilot-scale biochar-amended woodchip bioreactors to remove nitrate, metals, and trace organic contaminants from urban storm water runoff. Water Res. 154, 1–11
Ambaye, T. G., Vaccari, M., van Hullebusch, E. D., Amrane, A., & Rtimi, S. J. I. J. O. E. S. (2021). Mechanisms and adsorption capacities of biochar for the removal of organic and inorganic pollutants from industrial wastewater. International Journal of Environmental Science and Technology, 18(10), 3273-3294.
Long, L., Xue, Y., Hu, X., & Zhu, Y. (2019). Study on the influence of surface potential on the nitrate adsorption capacity of metal modified biochar. Environmental Science and Pollution Research, 26, 3065-3074.
Fernandes, J. O., Bernardino, C. A. R., Mahler, C. F., Santelli, R. E., Braz, B. F., Borges, R. C., ... & Cincotto, F. H. (2021). Biochar generated from agro-industry sugarcane residue by low temperature pyrolysis utilized as an adsorption agent for the removal of thiamethoxam pesticide in wastewater. Water, Air, & Soil Pollution, 232, 1-13.
Carvalho, J., Nascimento, L., Soares, M., Valério, N., Ribeiro, A., Faria, L., ... & Vilarinho, C. (2022). Life cycle assessment (LCA) of biochar production from a circular economy perspective. Processes, 10(12), 2684.
Liu, L., Li, Y., & Fan, S. (2019). Preparation of KOH and H3PO4 modified biochar and its application in methylene blue removal from aqueous solution. Processes, 7(12), 891.
Qin, C., Wang, H., Yuan, X., Xiong, T., Zhang, J., & Zhang, J. (2020). Understanding structure-performance correlation of biochar materials in environmental remediation and electrochemical devices. Chemical Engineering Journal, 382, 122977.
Yang, Z., Wang, Z., Liang, G., Zhang, X., & Xie, X. (2021). Catalyst bridging-mediated electron transfer for nonradical degradation of bisphenol A via natural manganese ore-cornstalk biochar composite activated peroxymonosulfate. Chemical Engineering Journal, 426, 131777.
Ghodake, G. S., Shinde, S. K., Kadam, A. A., Saratale, R. G., Saratale, G. D., Kumar, M., ... & Kim, D. Y. (2021). Review on biomass feedstocks, pyrolysis mechanism and physicochemical properties of biochar: State-of-the-art framework to speed up vision of circular bioeconomy. Journal of Cleaner Production, 297, 126645.
Tripathi, M., Sahu, J. N., & Ganesan, P. (2016). Effect of process parameters on production of biochar from biomass waste through pyrolysis: A review. Renewable and sustainable energy reviews, 55, 467-481.
Vardon, D. R., Sharma, B. K., Blazina, G. V., Rajagopalan, K., & Strathmann, T. J. (2012). Thermochemical conversion of raw and defatted algal biomass via hydrothermal liquefaction and slow pyrolysis. Bioresource technology, 109, 178-187.
Nath, H., Sarkar, B., Mitra, S., & Bhaladhare, S. (2022). Biochar from biomass: a review on biochar preparation its modification and impact on soil including soil microbiology. Geomicrobiology Journal, 39(3-5), 373-388.
Hameed, R., Lei, C., & Lin, D. (2020). Adsorption of organic contaminants on biochar colloids: effects of pyrolysis temperature and particle size. Environmental Science and Pollution Research, 27, 18412-18422.
Yao, Z., You, S., Ge, T., & Wang, C. H. (2018). Biomass gasification for syngas and biochar co-production: Energy application and economic evaluation. Applied Energy, 209, 43-55.
Lee, J. W., Kidder, M., Evans, B. R., Paik, S., Buchanan Iii, A. C., Garten, C. T., & Brown, R. C. (2010). Characterization of biochars produced from cornstovers for soil amendment. Environmental science & technology, 44(20), 7970-7974.
Nzihou, A., Stanmore, B., & Sharrock, P. (2013). A review of catalysts for the gasification of biomass char, with some reference to coal. Energy, 58, 305-317.
Wang, B., Zhai, Y., Wang, T., Li, S., Peng, C., Wang, Z., ... & Xu, B. (2019). Fabrication of bean dreg-derived carbon with high adsorption for methylene blue: Effect of hydrothermal pretreatment and pyrolysis process. Bioresource technology, 274, 525-532.
Li, A., Jin, K., Qin, J., Huang, Z., Liu, Y., Chen, R., ... & Chen, J. (2023). Hydrochar Pelletization towards Solid Biofuel from Biowaste Hydrothermal Carbonization. Journal of Renewable Materials, 11(1).
Román, S., Nabais, J. M. V., Laginhas, C., Ledesma, B., & González, J. F. (2012). Hydrothermal carbonization as an effective way of densifying the energy content of biomass. Fuel Processing Technology, 103, 78-83.
Sabio, E., Álvarez-Murillo, A., Román, S., & Ledesma, B. (2016). Conversion of tomato-peel waste into solid fuel by hydrothermal carbonization: Influence of the processing variables. Waste management, 47, 122-132.
Dai, Y., Zhang, N., Xing, C., Cui, Q., & Sun, Q. (2019). The adsorption, regeneration and engineering applications of biochar for removal organic pollutants: a review. Chemosphere, 223, 12-27.
Qiu, B., Shao, Q., Shi, J., Yang, C., & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 121925.
Jin, J., Li, S., Peng, X., Liu, W., Zhang, C., Yang, Y., ... & Wang, X. (2018). HNO3 modified biochars for uranium (VI) removal from aqueous solution. Bioresource Technology, 256, 247-253.
Zhao, N., Zhao, C., Lv, Y., Zhang, W., Du, Y., Hao, Z., & Zhang, J. (2017). Adsorption and coadsorption mechanisms of Cr (VI) and organic contaminants on H3PO4 treated biochar. Chemosphere, 186, 422-429.
Mu, Y., & Ma, H. (2021). NaOH-modified mesoporous biochar derived from tea residue for methylene Blue and Orange II removal. Chemical Engineering Research and Design, 167, 129-140.
Su, X., Wang, X., Ge, Z., Bao, Z., Lin, L., Chen, Y., ... & Pillai, S. C. (2024). Koh-activated biochar and chitosan composites for efficient adsorption of industrial dye pollutants. Chemical Engineering Journal, 486, 150387.
Qiu, B., Shao, Q., Shi, J., Yang, C., & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 121925.
Wong, S., Ngadi, N., Inuwa, I. M., & Hassan, O. (2018). Recent advances in applications of activated carbon from biowaste for wastewater treatment: a short review. Journal of Cleaner Production, 175, 361-375.
Yusuff, A. S., Lala, M. A., Thompson-Yusuff, K. A., & Babatunde, E. O. (2022). ZnCl2-modified eucalyptus bark biochar as adsorbent: preparation, characterization and its application in adsorption of Cr (VI) from aqueous solutions. South African Journal of Chemical Engineering, 42, 138-145.
Kang, X., Geng, N., Li, Y., Li, X., Yu, J., Gao, S., ... & Lou, Y. (2022). Treatment of cadmium and zinc-contaminated water systems using modified biochar: Contaminant uptake, adsorption ability, and mechanism. Bioresource Technology, 363, 127817.
saac, R., & Siddiqui, S. (2022). Sequestration of Ni (II) and Cu (II) using FeSO4 modified Zea mays husk magnetic biochar: Isotherm, kinetics, thermodynamic studies and RSM. Journal of Hazardous Materials Advances, 8, 100162.
Zhou, Z., Wang, Y., Sun, S., Wang, Y., & Xu, L. (2022). Preparation of PVA/waste oyster shell powder composite as an efficient adsorbent of heavy metals from wastewater. Heliyon, 8(12).
Xiang, A., Gao, Z., Zhang, K., Jiang, E., Ren, Y., & Wang, M. (2021). Study on the Cd (II) adsorption of biochar based carbon fertilizer. Industrial Crops and Products, 174, 114213.
Tehreem, S., Yousra, M., Alamer, K. H., Alsudays, I. M., Sarwar, S., Kamal, A., & Naeem, S. (2022). Analysis of the role of various biochar in the remediation of heavy metals in contaminated water and its kinetics study. Journal of Saudi Chemical Society, 26(5), 101518.
Singh, E., Kumar, A., Mishra, R., You, S., Singh, L., Kumar, S., & Kumar, R. (2021). Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution. Bioresource Technology, 320, 124278.
Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman Jr, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of hazardous materials, 188(1-3), 319-333.
Mubarak, N. M., Alicia, R. F., Abdullah, E. C., Sahu, J. N., Haslija, A. A., & Tan, J. (2013). Statistical optimization and kinetic studies on removal of Zn2+ using functionalized carbon nanotubes and magnetic biochar. Journal of Environmental Chemical Engineering, 1(3), 486-495.
Tong, X. J., Li, J. Y., Yuan, J. H., & Xu, R. K. (2011). Adsorption of Cu (II) by biochars generated from three crop straws. Chemical Engineering Journal, 172(2-3), 828-834.
Pellera, F. M., Giannis, A., Kalderis, D., Anastasiadou, K., Stegmann, R., Wang, J. Y., & Gidarakos, E. (2012). Adsorption of Cu (II) ions from aqueous solutions on biochars prepared from agricultural by-products. Journal of Environmental Management, 96(1), 35-42.
Kołodyńska, D., Wnętrzak, R., Leahy, J. J., Hayes, M. H. B., Kwapiński, W., & Hubicki, Z. J. C. E. J. (2012). Kinetic and adsorptive characterization of biochar in metal ions removal. Chemical Engineering Journal, 197, 295-305.
Xu, X., Cao, X., Zhao, L., Wang, H., Yu, H., & Gao, B. (2013). Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar. Environmental Science and Pollution Research, 20, 358-368.
Mohan, D., Rajput, S., Singh, V. K., Steele, P. H., & Pittman Jr, C. U. (2011). Modeling and evaluation of chromium remediation from water using low cost bio-char, a green adsorbent. Journal of hazardous materials, 188(1-3), 319-333.
Park, J. H., Ok, Y. S., Kim, S. H., Cho, J. S., Heo, J. S., Delaune, R. D., & Seo, D. C. (2016). Competitive adsorption of heavy metals onto sesame straw biochar in aqueous solutions. Chemosphere, 142, 77-83.
Wang, P., Liu, X., Wu, X., Xu, J., Dong, F., & Zheng, Y. (2018). Evaluation of biochars in reducing the bioavailability of flubendiamide in water/sediment using passive sampling with polyoxymethylene. Journal of hazardous materials, 344, 1000-1006.
Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118, 536-544.
Ahmed, M. B., Zhou, J. L., Ngo, H. H., Johir, M. A. H., & Sornalingam, K. (2018). Sorptive removal of phenolic endocrine disruptors by functionalized biochar: Competitive interaction mechanism, removal efficacy and application in wastewater. Chemical Engineering Journal, 335, 801-811.
He, R., Peng, Z., Lyu, H., Huang, H., Nan, Q., & Tang, J. (2018). Synthesis and characterization of an iron-impregnated biochar for aqueous arsenic removal. Science of the Total Environment, 612, 1177-1186.
Wang, P., Liu, X., Wu, X., Xu, J., Dong, F., & Zheng, Y. (2018). Evaluation of biochars in reducing the bioavailability of flubendiamide in water/sediment using passive sampling with polyoxymethylene. Journal of hazardous materials, 344, 1000-1006.
Dong, X., Ma, L. Q., & Li, Y. (2011). Characteristics and mechanisms of hexavalent chromium removal by biochar from sugar beet tailing. Journal of hazardous materials, 190(1-3), 909-915.
Qiu, B., Shao, Q., Shi, J., Yang, C., & Chu, H. (2022). Application of biochar for the adsorption of organic pollutants from wastewater: Modification strategies, mechanisms and challenges. Separation and Purification Technology, 300, 121925.
Hale, S. E., Lehmann, J., Rutherford, D., Zimmerman, A. R., Bachmann, R. T., Shitumbanuma, V., ... & Cornelissen, G. (2012). Quantifying the total and bioavailable polycyclic aromatic hydrocarbons and dioxins in biochars. Environmental science & technology, 46(5), 2830-2838.
Bartoli, M., Rosi, L., Giovannelli, A., Frediani, P., & Frediani, M. (2016). Production of bio-oils and bio-char from Arundo donax through microwave assisted pyrolysis in a multimode batch reactor. Journal of analytical and applied pyrolysis, 122, 479-489.
Klasson, K. T., Ledbetter, C. A., Uchimiya, M., & Lima, I. M. (2013). Activated biochar removes 100% dibromochloropropane from field well water. Environmental chemistry letters, 11, 271-275.
Liu, Z., & Zhang, F. S. (2009). Removal of lead from water using biochars prepared from hydrothermal liquefaction of biomass. Journal of hazardous materials, 167(1-3), 933-939.
Mohan, D., Sarswat, A., Ok, Y. S., & Pittman Jr, C. U. (2014). Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent–a critical review. Bioresource technology, 160, 191-202.
Qiu, Y., Zheng, Z., Zhou, Z., & Sheng, G. D. (2009). Effectiveness and mechanisms of dye adsorption on a straw-based biochar. Bioresource technology, 100(21), 5348-5351.
Karakoyun, N., Kubilay, S., Aktas, N., Turhan, O., Kasimoglu, M., Yilmaz, S., & Sahiner, N. (2011). Hydrogel–Biochar composites for effective organic contaminant removal from aqueous media. Desalination, 280(1-3), 319-325.
Liu, Y., Yang, M., Wu, Y., Wang, H., Chen, Y., & Wu, W. (2011). Reducing CH 4 and CO 2 emissions from waterlogged paddy soil with biochar. Journal of Soils and Sediments, 11, 930-939.
Mukherjee, A., Zimmerman, A. R., & Harris, W. (2011). Surface chemistry variations among a series of laboratory-produced biochars. Geoderma, 163(3-4), 247-255.
Zhou, Y., Gao, B., Zimmerman, A. R., Chen, H., Zhang, M., & Cao, X. (2014). Biochar-supported zerovalent iron for removal of various contaminants from aqueous solutions. Bioresource technology, 152, 538-542.
Peng, X. Y. L. L., Ye, L. L., Wang, C. H., Zhou, H., & Sun, B. (2011). Temperature-and duration-dependent rice straw-derived biochar: Characteristics and its effects on soil properties of an Ultisol in southern China. Soil and tillage research, 112(2), 159-166.
Chen, B., & Chen, Z. (2009). Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere, 76(1), 127-133.
Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource technology, 102(22), 10293-10298.
Xu, R. K., Xiao, S. C., Yuan, J. H., & Zhao, A. Z. (2011). Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresource technology, 102(22), 10293-10298.
Han XiangYun, H. X., Chu Lei, C. L., Liu ShaoMin, L. S., Chen TianMing, C. T., Ding Cheng, D. C., Yan JinLong, Y. J., ... & Quan GuiXiang, Q. G. (2015). Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar.
Han XiangYun, H. X., Chu Lei, C. L., Liu ShaoMin, L. S., Chen TianMing, C. T., Ding Cheng, D. C., Yan JinLong, Y. J., ... & Quan GuiXiang, Q. G. (2015). Removal of methylene blue from aqueous solution using porous biochar obtained by KOH activation of peanut shell biochar
Kalderis, D., Kayan, B., Akay, S., Kulaksız, E., & Gözmen, B. (2017). Adsorption of 2, 4-dichlorophenol on paper sludge/wheat husk biochar: process optimization and comparison with biochars prepared from wood chips, sewage sludge and hog fuel/demolition waste. Journal of environmental chemical engineering, 5(3), 2222-2231.
Zhao, N., Yang, X., Zhang, J., Zhu, L., & Lv, Y. (2017). Adsorption mechanisms of dodecylbenzene sulfonic acid by corn straw and poplar leaf biochars. Materials, 10(10), 1119.
Kim, J., & Hyun, S. (2018). Sorption of ionic and nonionic organic solutes onto giant Miscanthus-derived biochar from methanol-water mixtures. Science of the total environment, 615, 805-813.
Li, H., Cao, Y., Zhang, D., & Pan, B. (2018). pH-dependent KOW provides new insights in understanding the adsorption mechanism of ionizable organic chemicals on carbonaceous materials. Science of the total environment, 618, 269-275.
Vyavahare, G. D., Gurav, R. G., Jadhav, P. P., Patil, R. R., Aware, C. B., & Jadhav, J. P. (2018). Response surface methodology optimization for sorption of malachite green dye on sugarcane bagasse biochar and evaluating the residual dye for phyto and cytogenotoxicity. Chemosphere, 194, 306-315.
Zhang, Y., Cao, B., Zhao, L., Sun, L., Gao, Y., Li, J., & Yang, F. (2018). Biochar-supported reduced graphene oxide composite for adsorption and coadsorption of atrazine and lead ions. Applied Surface Science, 427, 147-155.
Yang, X., Chen, Z., Wu, Q., & Xu, M. (2018). Enhanced phenanthrene degradation in river sediments using a combination of biochar and nitrate. Science of the total environment, 619, 600-605.
Fang, G., Zhu, C., Dionysiou, D. D., Gao, J., & Zhou, D. (2015). Mechanism of hydroxyl radical generation from biochar suspensions: implications to diethyl phthalate degradation. Bioresource Technology, 176, 210-217.
Naldoni, A., Altomare, M., Zoppellaro, G., Liu, N., Kment, S., Zboril, R., & Schmuki, P. (2018). Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS catalysis, 9(1), 345-364.
Chen, X., Shen, S., Guo, L., & Mao, S. S. (2010). Semiconductor-based photocatalytic hydrogen generation. Chemical reviews, 110(11), 6503-6570.
Lu, L., Shan, R., Shi, Y., Wang, S., & Yuan, H. (2019). A novel TiO2/biochar composite catalysts for photocatalytic degradation of methyl orange. Chemosphere, 222, 391-398.
Liu, X. Q., Chen, W. J., & Jiang, H. (2017). Facile synthesis of Ag/Ag3PO4/AMB composite with improved photocatalytic performance. Chemical Engineering Journal, 308, 889-896.
Huang, H. B., Wang, Y., Jiao, W. B., Cai, F. Y., Shen, M., Zhou, S. G., ... & Cao, R. (2018). Lotus-leaf-derived activated-carbon-supported nano-CdS as energy-efficient photocatalysts under visible irradiation. ACS sustainable chemistry & engineering, 6(6), 7871-7879.
Colmenares, J. C., Lisowski, P., & Łomot, D. (2013). A novel biomass-based support (Starbon) for TiO 2 hybrid photocatalysts: a versatile green tool for water purification. RSC Advances, 3(43), 20186-20192.
Lisowski, P., Colmenares, J. C., Masek, O., Lisowski, W., Lisovytskiy, D., Kaminska, A., & Łomot, D. (2017). Dual functionality of TiO2/biochar hybrid materials: photocatalytic phenol degradation in the liquid phase and selective oxidation of methanol in the gas phase. ACS Sustainable Chemistry & Engineering, 5(7), 6274-6287.
Luo, L., Yang, Y., Xiao, M., Bian, L., Yuan, B., Liu, Y., ... & Pan, X. (2015). A novel biotemplated synthesis of TiO2/wood charcoal composites for synergistic removal of bisphenol A by adsorption and photocatalytic degradation. Chemical Engineering Journal, 262, 1275-1283.
Matos, J., Atienzar, P., García, H., & Hernández-Garrido, J. C. (2013). Nanocrystalline carbon–TiO2 hybrid hollow spheres as possible electrodes for solar cells. Carbon, 53, 169-181.
Wu, F., Liu, W., Qiu, J., Li, J., Zhou, W., Fang, Y., ... & Li, X. (2015). Enhanced photocatalytic degradation and adsorption of methylene blue via TiO2 nanocrystals supported on graphene-like bamboo charcoal. Applied Surface Science, 358, 425-435.
Pi, L., Jiang, R., Zhou, W., Zhu, H., Xiao, W., Wang, D., & Mao, X. (2015). g-C3N4 modified biochar as an adsorptive and photocatalytic material for decontamination of aqueous organic pollutants. Applied Surface Science, 358, 231-239.
Khataee, A., Kayan, B., Gholami, P., Kalderis, D., & Akay, S. (2017). Sonocatalytic degradation of an anthraquinone dye using TiO2-biochar nanocomposite. Ultrasonics sonochemistry, 39, 120-128.
Zhang, H., Wang, Z., Li, R., Guo, J., Li, Y., Zhu, J., & Xie, X. (2017). TiO2 supported on reed straw biochar as an adsorptive and photocatalytic composite for the efficient degradation of sulfamethoxazole in aqueous matrices. Chemosphere, 185, 351-360.
Kumar, A., Kumar, A., Sharma, G., Naushad, M., Stadler, F. J., Ghfar, A. A., ... & Saini, R. V. (2017). Sustainable nano-hybrids of magnetic biochar supported g-C3N4/FeVO4 for solar powered degradation of noxious pollutants-Synergism of adsorption, photocatalysis & photo-ozonation. Journal of Cleaner Production, 165, 431-451.
Han, S., Xiao, P., An, L., & Wu, D. (2022). Oxidative degradation of tetracycline using peroxymonosulfate activated by cobalt-doped pomelo peel carbon composite. Environmental Science and Pollution Research, 29(15), 21656-21669.
Zhao, H., Chen, W., Wu, D., Liu, X., Hu, W., & Zhang, X. (2023). Coupling the effect of Co and Mo on peroxymonosulfate activation for the removal of organic pollutants. Environmental Science and Pollution Research, 30(16), 48389-48400.
Han, L., Xue, S., Zhao, S., Yan, J., Qian, L., & Chen, M. (2015). Biochar supported nanoscale iron particles for the efficient removal of methyl orange dye in aqueous solutions. PloS one, 10(7), e0132067.
Chen, L., Yang, S., Zuo, X., Huang, Y., Cai, T., & Ding, D. (2018). Biochar modification significantly promotes the activity of Co3O4 towards heterogeneous activation of peroxymonosulfate. Chemical Engineering Journal, 354, 856-865.
Park, J. H., Wang, J. J., Xiao, R., Tafti, N., DeLaune, R. D., & Seo, D. C. (2018). Degradation of Orange G by Fenton-like reaction with Fe-impregnated biochar catalyst. Bioresource technology, 249, 368-376.
Cobbina, S. J., Duwiejuah, A. B., & Quainoo, A. K. (2019). Single and simultaneous adsorption of heavy metals onto groundnut shell biochar produced under fast and slow pyrolysis. International journal of environmental science and technology, 16, 3081-3090.
Wang, Y., Meng, X., Wang, S., Mo, Y., Xu, W., Liu, Y., & Shi, W. (2024). Efficient adsorption of Cu2+ and Cd2+ from groundwater by MgO-modified sludge biochar in single and binary systems. Environmental Science and Pollution Research, 31(6), 9237-9250.
Song, Z., Liu, Y., Liu, L., Yang, C., Tian, W., Duan, B., ... & Wang, W. (2024). Reusable magnetically modified Enteromorpha prolifera-based biochar hydrogels: competitive removal mechanism for metal-organic dye composite contaminants. Carbon Research, 3(1), 1-20.
Belcaid, A., Beakou, B. H., Bouhsina, S., & Anouar, A. (2024). Insight into adsorptive removal of methylene blue, malachite green, and rhodamine B dyes by cassava peel biochar (Manihot esculenta Crantz) in single, binary, and ternary systems: competitive adsorption study and theoretical calculations. Biomass Conversion and Biorefinery, 14(6), 7783-7806.
Zhang, Y., Xiangshi, P., Tian, J., Li, F., Fan, X., Ma, L., & Zhang, R. (2021). Synthesis of peroxymonosulfate composite catalyst (Fe0/Fe3O4/biochar) using waterworks sludge and walnut shell for degrading methylene blue. Journal of Environmental Chemical Engineering, 9(6), 106856.
Li, Y., Liu, Y., Liu, Y., Chen, Y., Chen, L., Yan, H., ... & Li, L. (2022). Modification of sludge biochar by MnO2 to degrade methylene blue: Synergistic catalysis and degradation mechanisms. Journal of Water Process Engineering, 48, 102864.
Sajjadi, S., Anand, A., Beltrán, A. M., Dvoranová, D., Boccaccini, A. R., Galusková, D., ... & Klement, R. (2024). Investigation of catalytic activation of peroxydisulfate on cu-doped mesoporous silica-based particles (Cu-BMS) for efficient degradation of methylene blue. Catalysis Communications, 186, 106833.
Liu, W., Sun, D., Ma, H., Ma, C., Zhang, X., & Hao, J. (2023). CeO2/ZIF-9 composites as a heterogeneous catalyst for peroxymonosulfate activation to degrade methylene blue. Research on Chemical Intermediates, 49(7), 3161-3180.
Lei, Y., Chen, C. S., Tu, Y. J., Huang, Y. H., & Zhang, H. (2015). Heterogeneous degradation of organic pollutants by persulfate activated by CuO-Fe3O4: mechanism, stability, and
effects of pH and bicarbonate ions. Environmental science & technology, 49(11), 6838-6845.
Liu, L., Han, C., Ding, G., Yu, M., Li, Y., Liu, S., ... & Liu, J. (2022). Oxygen vacancies-enriched Cu/Co bimetallic oxides catalysts for high-efficiency peroxymonosulfate activation to degrade TC: Insight into the increase of Cu+ triggered by Co doping. Chemical Engineering Journal, 450, 138302.
Peng, J., Chang, Y., Xu, L., Zhang, Y., Wang, T., Wang, X., ... & Cao, Z. (2023). Insights into the enhanced removal of sulfamethoxazole via peroxymonosulfate activation catalyzed by bimetallic (Co/Cu) doped graphitic carbon nitride: Reaction kinetics, mechanisms, and pathways. Chemical Engineering Journal, 476, 146692.
Xie, K., Han, R., Sun, P., Wang, H., Fang, Y., Zhai, Z., ... & Liu, H. (2021). Rice husk biochar modified-CuCo 2 O 4 as an efficient peroxymonosulfate activator for non-radical degradation of organic pollutants from aqueous environment. RSC advances, 11(62), 39467-39475.
Han, S., & Xiao, P. (2022). Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism. Separation and Purification Technology, 287, 120533.
Sun, J., Zhang, D., Xia, D., & Li, Q. (2023). Orange peels biochar doping with Fe-Cu bimetal for PMS activation on the degradation of bisphenol A: A synergy of SO4−, OH, 1O2 and electron transfer. Chemical Engineering Journal, 471, 144832.
Wang, Y., Ao, Z., Sun, H., Duan, X., & Wang, S. (2016). Activation of peroxymonosulfate by carbonaceous oxygen groups: experimental and density functional theory calculations. Applied Catalysis B: Environmental, 198, 295-302.
Copyright (c) 2024 Hein Min Htet, Aodi Tian, He Huang
This work is licensed under a Creative Commons Attribution 4.0 International License.