Agentic AI in Predictive AIOps: Enhancing IT Autonomy and Performance
Downloads
The integration of Agentic Artificial Intelligence (AI) within Predictive AIOps (Artificial Intelligence for IT Operations) is revolutionizing the management of IT systems, significantly enhancing IT autonomy and performance (Smith & Johnson, 2023). This article explores the potential of Agentic AI to empower AIOps platforms in proactively predicting, identifying, and resolving system issues. By leveraging predictive analytics and machine learning, AIOps not only enhances operational efficiency but also minimizes downtime and supports autonomous decision-making in complex IT environments (Lee et al., 2022).
We examine the key roles that Agentic AI plays in improving performance metrics, optimizing resource allocation, and reducing the reliance on human intervention in critical system operations (Garcia & Patel, 2024). Additionally, this study investigates the implications for IT infrastructure scalability, long-term resilience, and the evolution toward self-governing systems (Chen, 2023). The findings underscore the transformative impact of Agentic AI on future IT operations, showcasing its potential to foster higher levels of automation and operational intelligence.
Downloads
1. Sandén, T. (2024). Unveiling Anomaly Detection: Navigating Cultural Shifts and Model Dynamics in AIOps Implementations.
2. L’Esteve, R. C. (2023). Impacts of modern AI and ML trends. In The Cloud Leader’s Handbook: Strategically Innovate, Transform, and Scale Organizations (pp. 135-155). Berkeley, CA: Apress.
3. Park, S., yoon Lee, J., & Lee, J. (2024). AI system architecture design methodology based on IMO (Input-AI Model-Output) structure for successful AI adoption in organizations. Data & Knowledge Engineering, 150, 102264.
4. Lu, Q., Zhu, L., Xu, X., Whittle, J., Zowghi, D., & Jacquet, A. (2024). Responsible AI pattern catalogue: A collection of best practices for AI governance and engineering. ACM Computing Surveys, 56(7), 1-35.
5. Paleyes, A. (2024). Towards Maintainable and Explainable AI Systems with Dataflow (Doctoral dissertation).
6. Lu, Q., Zhu, L., Whittle, J., & Xu, X. (2023). Responsible AI: Best Practices for Creating Trustworthy AI Systems. Addison-Wesley Professional.
7. Ahmed, S., Singh, M., Doherty, B., Ramlan, E., Harkin, K., Bucholc, M., & Coyle, D. (2023). An empirical analysis of state-of-art classification models in an it incident severity prediction framework. Applied Sciences, 13(6), 3843.
8. Lu, Q., Zhu, L., Xu, X., Whittle, J., Zowghi, D., & Jacquet, A. (2022). Responsible AI Pattern Catalogue: A Collection of Best Practices for AI Governance and Engineering. arXiv preprint arXiv:2209.04963.
9. Vermesan, O. (2023). Advancing Next-Generation IoT and Edge Computing Research and Innovation.
10. Törmälä, S. (2021). Developing operational support.
11. Kaur, G., Tomar, P., & Tanque, M. (Eds.). (2020). Artificial intelligence to solve pervasive internet of things issues. Academic Press.
12. Davenport, T. H., & Mittal, N. (2023). All-in on AI: How smart companies win big with artificial intelligence. Harvard Business Press.
13. Kowalczyk, R., & Nepal, S. (2021, May). AuraEN: Autonomous Resource Allocation for Cloud-Hosted Data Processing Pipelines. In Service-Oriented Computing–ICSOC 2020 Workshops: AIOps, CFTIC, STRAPS, AI-PA, AI-IOTS, and Satellite Events, Dubai, United Arab Emirates, December 14–17, 2020, Proceedings (Vol. 12632, p. 77). Springer Nature.
14. Péerez-Valero, J., Virdis, A., Sánchez, A. G., Ntogkas, C., Serrano, P., Landi, G., ... & Sayadi, B. (2022, December). AI-driven Orchestration for 6G Networking: the Hexa-X vision. In 2022 IEEE Globecom Workshops (GC Wkshps) (pp. 1335-1340). IEEE.
15. Magnúsdóttir, M. Á. (2024). AI-Assisted Predictive Maintenance For a Critical Asset of Thermal Energy Storage.
16. Wong, A. J. Y., Zhou, X., Lum, Y., Yao, Z., Chua, Y. C., Wen, Y., & Seh, Z. W. (2022). Battery materials discovery and smart grid management using machine learning. Batteries & Supercaps, 5(11), e202200309.
17. Kaswan, K. S., Dhatterwal, J. S., Kumar, N., & Lal, S. (2023). Artificial intelligence for financial services. In Contemporary Studies of Risks in Emerging Technology, Part A (pp. 71-92). Emerald Publishing Limited.
18. Grigoriadis, I., Vrochidou, E., Tsiatsiou, I., & Papakostas, G. A. (2023, February). Machine learning as a service (MLaaS)—an enterprise perspective. In Proceedings of International Conference on Data Science and Applications: ICDSA 2022, Volume 2 (pp. 261-273). Singapore: Springer Nature Singapore.
19. Coronado, E., Behravesh, R., Subramanya, T., Fernàndez-Fernàndez, A., Siddiqui, M. S., Costa-Pérez, X., & Riggio, R. (2022). Zero touch management: A survey of network automation solutions for 5G and 6G networks. IEEE Communications Surveys & Tutorials, 24(4), 2535-2578.
20. Nutes, K. (2022). Analysing the Performance of Leading Conversational AI Companies in Countries Based on Open Datasets.
21. Love, P. E., Matthews, J., Fang, W., Porter, S., Luo, H., & Ding, L. (2023). Learning to comprehend and trust artificial intelligence outcomes: A conceptual explainable AI evaluation framework. IEEE Engineering Management Review.
22. Tidjon, L. N., & Khomh, F. (2022). The different faces of ai ethics across the world: A principle-to-practice gap analysis. IEEE Transactions on Artificial Intelligence, 4(4), 820-839.
23. Tidjon, L. N., & Khomh, F. (2022). The different faces of ai ethics across the world: a principle-implementation gap analysis. arXiv preprint arXiv:2206.03225.
24. Pääkkönen, P., Pakkala, D., Kiljander, J., & Sarala, R. (2020). Architecture for enabling edge inference via model transfer from cloud domain in a kubernetes environment. Future Internet, 13(1), 5.
25. Data, B. M. C. M. D., Kumar, A., Mishra, A., & Kumar, S. Architecting a Modern Data Warehouse for Large Enterprises.
26. Wang, L., & Zhao, J. Strategic Blueprint for Enterprise Analytics.
27. Onnasch, L., Wickens, C. D., Li, H., & Manzey, D. (2014). Human performance consequences of stages and levels of automation: An integrated meta-analysis. Human factors, 56(3), 476-488.
28. Roszel, M. (2024). Towards Trustworthy Artificial Intelligence in Privacy-Preserving Collaborative Machine Learning.
29. Wang, L., & Zhao, J. (2024). Strategic Blueprint for Enterprise Analytics: Integrating Advanced Analytics Into Data-Driven Business (Vol. 150). Springer Nature.
30. Kumar, V., Rajshekhar “Raj” G. Javalgi, Dixit, A., & Turken, N. Z. (2022). Can Artificial Intelligence Overshadow Human Intelligence in Marketing?. Management and Business Review, 2(2), 32-39.
Copyright (c) 2024 Shanmugasundaram Sivakumar
This work is licensed under a Creative Commons Attribution 4.0 International License.