Evaluating Supplementary Irrigation Water Depths for Improving Land and Water Productivity under Grown Tomato in a Semi-Arid Climate, Burkina Faso
Downloads
In the actual rainwater variability and the declining water resources context, the great challenge of agriculture in Burkina Faso is to produce more with less water. That may be possible through the optimal use of water in tomato production since the yield is decreasing while the demand is still increasing particularly in the rainy season. Therefore, an experiment was implemented to identify the irrigation water depth that will improve both the yield and the efficiency of water use. The design was a complete randomized block with four replications. Four irrigation water treatments representing 50% (D50%), 75% (D75%), and 100% (D100%) of tomato water requirement were applied. The calculated and adopted irrigation interval was 2 days. After transplanting, a constant water depth (D50%) was used. The water treatments were initiated 15 days after transplanting. The water application was postponed to the next irrigation when the rain occurred. The results showed that the application of D75% increased the tomato yield from 4%. Although microbial activity was inhibited during the first year of experimentation, it increased significantly by 144% compared to the control in the second year. Moreover, results showed that the application of D50% increased the water productivity from 175% compare to full irrigation and appeared profitable. The application of supplementary irrigation of D50% should be adopted in rainfed tomato production for sustainable improvement of lands and water productivity.
Downloads
1. E. Nkonya, F.Place, J. Pender, M. Mwanjololo, A. Okhimamhe, E.Kato, S. Crespo, J. Ndjeunga , S.Traore, “Climate risk management through sustainable land management in Sub-Saharan Africa (sustainable solutions for ending hunger and poverty)”, International Food Policy Research Institute (IFPRI), pp. 1126, 2011
2. M. Zorom, B. Barbier, O. Mertz, E. Servat, “Diversification and adaptation strategies to climate variability: a farm typology for the Sahel”, Agric. Syst, 116, pp. 7-15, 2013.
3. B. Barbier, H. Yacouba, H. Karambiri, M. Zoromé, B. Somé “Human vulnerability to climate variability in the sahel: Farmers’ adaptation strategies in northern burkina faso”, Environ Manage, 43(5), pp. 790–803. May 2009 doi: 10.1007/s00267-008-9237-9.
4. M. Ouédraogo, D. Youssouf, S. Leopold, “ Perception et stratégies d’adaptation aux changements des précipitations : cas des paysans du Burkina Faso’’, Science et Changements Planetaires – Secheresse , 21(2), pp. 87-96, 2010
5. R. Eric, V. Kaboré, C. Guenat, “Le zaï : fonctionnement, limites et amélioration d'une pratique traditionnelle africaine de réhabilitation de la végétation et de la productivité des terres dégradées en région soudano-sahélienne (Burkina Faso). In : Spécial érosion : réhabilitation des sols et GCES’’, Cahiers ORSTOM.Série Pédologie, 28 (2), pp. 159-173, 1993.
6. D. A. Wilhite, M. H. Glantz, “Understanding the Drought Phenomenon: The Role of Definitions’’, Water International, 10(3), pp. 111–120, 19885
7. F. Majid, Z. Liping, P. Subbiah, “Genetics of drought tolerance during seed germination in tomato: Inheritance and QTL mapping” Genome / National Research Council Canada, 46(4), pp. 536-45, 2003.
8. R. R. Mir, M. Zaman-Allah, N.Sreenivasulu, R. Trethowan, R. K. Varshney, “Integrated genomics, physiology, and breeding approaches for improving drought tolerance in crops”,Theor Appl Genet. 125, pp. 625–645,2012.
9. E. Etissa , N. Dechassa, Y. Alemayehu , “Estimation of Yield Response (Ky) and Validation of CropWat for Tomato under Different Irrigation Regimes “, Irrigation & Drainage Systems Engineering,5, pp. 2, 2016.
10. O. L. Okoth, “Effect of supplemental irrigation on growth, yield and economic returns of onion (Allium cepa) and tomato (Solanum lycopersicum) in Kibwezi district, Eastern Kenya’’ ( Thèse de doctorat, University of Nairobi). University of Nairobi, Kenya, 2011.
11. Y. DEMBÉLÉ, L.SOMÉ, G. ZOMBOUDRÉ, S. DIABRI, ‘’ Irrigation de complément du riz pluvial sur des sols sableux conditionnés avec de la matière organique au sud-ouest du Burkina Faso ‘’, GéoProdig, portail d'information géographique, 10(2), pp .143-145, 1999.
12. F.Satogno, S. F. O.Owido, J. J. Lelei, “Effects of supplemental irrigation on yield, water use efficiency and nitrogen use efficiency of potato grown in mollie Andosols”, Environ Syst Res, 10, pp.38, 2021.
13. Z. A. Zeleke, “Effect of Different Levels of Supplementary Irrigation on Yield and Yield Component of Maize (zea mays L) at Teppi, South West Ethiopia,” International Journal of Research Studies in Agricultural Sciences, 6(11), pp. 4–9, 2020, doi: 10.20431/2454-6224.0611002.
14. A.S. Kima, W.G. Chung, YM. Wang, S. Traoré, “Evaluating water depths for high water productivity in irrigated lowland rice field by employing alternate wetting and drying technique under tropical climate conditions, Southern Taiwan.” Paddy Water Environ, 13, pp. 379–389, 2015.
15. D. Son, I. Somda, A. Legrève, B. Schiffers, “Pratiques phytosanitaires et risques liés à l’usage des pesticides en culture de tomates au Burkina Faso,” 2017
16. C. Patanè, Leaf Area Index, Leaf Transpiration and Stomatal Conductance as Affected by Soil Water Deficit and VPD in Processing Tomato in Semi Arid Mediterranean Climate, J. Agron. Crop Sci, 197(3), pp. 165-176, 2011.
17. W. Y. Sobeih, I. C. Dodd, M. A. Bacon, D. Grierson, W. J. Davies, “Long-distance signals regulating stomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partial root-zone drying,” Journal of Experimental Botany, pp. 2353–2363, Nov. 2004.
18. A.Ciza , F. R. Silungwe, N. I. Kihupi, “Carrot Productivity under Various Levels of Irrigation and Fertilization” Asian Research Journal of Agriculture 15(4), PP. 56-68, 2022.
19. E. T. Ashine, M. T. Bedane, A. A. Mengesha. ‘’Response of Carrot (Daucus carota L.) to Supplementary Irrigation under Rain-Fed Agriculture at Jimma and Gera, Jimma Zone, South West Ethiopia”, Advances in Agriculture 2024(1), pp. 1-14. 2024.
20. Y. W. A. Pélagie, K. A. Sévérin, O. Samuel, K. Etienne, S. B.-W. Bernice, “Effect of Supplementary Irrigation Water and Organic Matter Amounts on Tomato Yield and Water Productivity in a Semi-arid Climate,” Asian Research Journal of Agriculture, 18(1), pp. 216–230, Mar. 2025,
21. T.Y. Reddy, V.R Reddy, Anbumozhi, “Physiological responses of groundnut to drought stress and its amelioration”, Plant growth regulation. 41, pp. 75-88, 2003.
22. L. U. Pulupol, M. H. Behboudian, Keith J. Fisher, “Growth, Yield, and Postharvest Attributes of Glasshouse Tomatoes Produced under Deficit Irrigation” HORTSCIENCE, 31(6), pp. 926–929.
23. Y. Zhao, S.Pang , M.Diao, “Impact of regulated deficit irrigation on the dynamics of quality changes in processing tomato fruits during ripening”, Agricultural Water Management, 304, 2024
24. Z. Wang, S.Yu , H. Zhang , L. Lei , C. Liang , L. Chen, D. Su, X. Li, “Deficit mulched drip irrigation improves yield, quality, and water use efficiency of watermelon in a desert oasis region”, Agricultural. Water Management 277, 2023
25. M. M. Nuruddin, C. A. Madramootoo, G. T. Dodds, “Effects of Water Stress at Different Growth Stages on Greenhouse Tomato Yield and Quality,” HortScience, 38(7), pp. 1389-139 2003.
26. J. Xu, X. Li, W. Wan, X. Zhu, C. Li, X. Zhao, Y. Zhao, S. Pang, M. Diao, “Impact of regulated deficit irrigation on the dynamics of quality changes in processing tomato fruits during ripening”, Agricultural Water Management. 304.
27. S. Naika, J. Joep, G. Marja, H. Martin, D. Barbara, La culture de la tomate production, transformation et commercialisation, Agrodok 17, 5ème éd. Pays bas, 2005.
28. S. Assefaa, B. Biazin, A. Mulunehd, F. Yimerb, A. Haileslassiee, “Rainwater harvesting for supplemental irrigation of onions in the southern dry lands of Ethiopia”, Agricultural Water Management. 178, pp. 352-334, 2016.
29. J. Lu, G. Shao, J. Cui, X. Wang, L. Keabetswe, “Yield, fruit quality and water use efficiency of tomato for processing under regulated deficit irrigation A meta-analysis,” Agric Water Manag, 222, pp. 301–312, Aug. 2019,
30. P.R. Dry, B.R. Loveys, H. Düring, “Partial drying of the rootzone of grape. I. Transient changes in shoot growth and gas exchange”, Vitis, 39, pp. 3-7, 2000.
31. O. Theib, Supplemental irrigation: a highly water-efficient practice,ICARDA, Aleppo, Syria, 1997
32. E. A. Davidson, I. A. Janssens, “Temperature Sensitivity of Soil Carbon Decomposition and Feedbacks to Climate Change”, Nature, 440, pp.165-73, 2006.
33. S. Das, S. T. Jeong, S. Das, P. J. Kim, “Composted cattle manure increases microbial activity and soil fertility more than composted swine manure in a submerged rice paddy,” Front Microbiol, 8, 2017
34. S. D. Allison, “Soil minerals and humic acids alter enzyme stability: implications for ecosystem processes”, Biogeochemistry, 81, pp. 361-373, 2006
Copyright (c) 2025 Yanogo Wendzoodo Amélie Pélagie, Kima Aimé Sévérin, Ouoba Samuel, Sandwidi Béné-Wendé Bernice, Kima Etienne

This work is licensed under a Creative Commons Attribution 4.0 International License.