Liquid Nanoco2 with Kaigen and GEIOS Technologies with Thermal and Rheological Characterization of Graphene Oxide/Carbon Nanotube Hybrid Nanoparticle-Enhanced Liquid CO2 for District Cooling and Data Centers Applications,
Downloads
This study presents a comprehensive thermal and rheological characterization of a novel hybrid nanofluid consisting of liquid carbon dioxide (CO₂) enhanced with graphene oxide (GO) and carbon nanotubes (CNTs). The nanofluid was analyzed across temperatures ranging from 8°C to -20°C to evaluate its heat transfer properties, rheological behavior, and phase stability at varying pressures. Results indicate a significant enhancement in thermal conductivity (approximately 77% improvement over pure liquid CO₂) while maintaining favorable flow characteristics with minimal viscosity increase. Temperature-dependent testing demonstrated robust performance across the operational range, with excellent stability characteristics maintained at pressures between 20-40 bar. The findings support the viability of this nanofluid as an advanced heat transfer medium for district cooling and data center applications, particularly in water-scarce regions.
Downloads
1. Choi, S. U. S.; Eastman, J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME Publ. Fed. 1995, 231, 99–105. DOI:10.1115/1.1532008
2. Serroune, S. A. et al. Advanced Two-Stage Nanocomposite Membrane System for Methane and Carbon Dioxide Separation from Atmospheric Air. Int. J. Novel Res. Dev. 2024, 9 (10), 128–135. IJNRD Link
3. Serroune, S. A. et al. Advanced Two-Stage Nanocomposite Membrane System for Methane and Carbon Dioxide Separation from Atmospheric Air. SSRN 2024, 4982911. SSRN Preprint
4. KAIGEN Labs. Nano-Molecular Membrane Technology for Precision Methane Capture. White Paper 2024. KAIGEN Resource Hub
5. Serroune, S. A. et al. Development and Characterization of Advanced Nano-Coating with CeO₂, Al₂O₃, ZnO, and TiO₂ Nanoparticles. J. Nanomater. Sci. 2024, 7 (2), 45–68. DOI:10.1080/27660400.2024.1987612
6. Wang, X.-Q.; Mujumdar, A. S. Heat Transfer Characteristics of Nanofluids: A Review. Int. J. Therm. Sci. 2007, 46 (1), 1–19. DOI:10.1016/j.ijthermalsci.2006.06.010
7. Saidur, R.; Leong, K. Y.; Mohammed, H. A. A Review on Applications and Challenges of Nanofluids. Renew. Sustain. Energy Rev. 2011, 15 (3), 1646–1668. DOI:10.1016/j.rser.2010.11.035
8. Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, 2011.
9. Singh, N. K. et al. Advanced Molecular Sieving Membranes for Atmospheric CO₂ Capture. J. Membr. Sci. 2024, 689, 122215. DOI:10.1016/j.memsci.2024.122215
10. International Desalination Association. 2021 Global Desalination Inventory. IDA Rep. 2021, 45–68.
11. Colebrook, C. F.; White, C. M. Experiments with Fluid Friction in Roughened Pipes. Proc. R. Soc. Lond. A 1937, 161 (906), 367–381. DOI:10.1098/rspa.1937.0150
12. Maxwell, J. C. A Treatise on Electricity and Magnetism, 3rd ed.; Clarendon Press: Oxford, 1892.
13. Zhang, X. et al. Graphene Oxide Dispersion Stability in Supercritical CO₂. Langmuir 2022, 38 (12), 3721–3733. DOI:10.1021/acs.langmuir.1c03244
14. GEIOS Consortium. Enhanced Quantum Geothermal Systems: Technical Specifications. EGS Tech. Bull. 2024, 12 (3), 1–45.
15. American Society of Mechanical Engineers. ASME B31.3-2024: Process Piping. ASME Press 2024.
16. International Organization for Standardization. ISO 80000-9:2023 Quantities and Units – Physical Chemistry and Molecular Physics. ISO Publ. 2023.
17. Hasselman, D. P. H.; Johnson, L. F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. J. Compos. Mater. 1987, 21 (6), 508–515. DOI:10.1177/002199838702100602
18. Buongiorno, J. et al. A Benchmark Study on the Thermal Conductivity of Nanofluids. J. Appl. Phys. 2009, 106 (9), 094312. DOI:10.1063/1.3245330
19. Hamilton, R. L.; Crosser, O. K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1 (3), 187–191. DOI:10.1021/i160003a005
20. Prasher, R.; Bhattacharya, P.; Phelan, P. E. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids). Phys. Rev. Lett. 2005, 94 (2), 025901. DOI:10.1103/PhysRevLett.94.025901
21. Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S. A Review on Development of Nanofluid Preparation and Characterization. Powder Technol. 2009, 196 (2), 89–101. DOI:10.1016/j.powtec.2009.07.025
22. Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids). Int. J. Heat Mass Transf. 2002, 45 (4), 855–863. DOI:10.1016/S0017-9310(01)00175-2
23. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339. DOI:10.1021/ja01539a017
24. Grant Thornton. Total Cost of Ownership Analysis: District Cooling Systems in Gulf Cooperation Council Countries. Energy Econ. Report 2022, 1–73.
Copyright (c) 2025 Shad Abdelmoumen SERROUNE, Dr IR Khasan, Dr Sandra Merrier, Tadeshi Ryushi

This work is licensed under a Creative Commons Attribution 4.0 International License.