Abstract

This study presents a comprehensive thermal and rheological characterization of a novel hybrid nanofluid consisting of liquid carbon dioxide (CO₂) enhanced with graphene oxide (GO) and carbon nanotubes (CNTs). The nanofluid was analyzed across temperatures ranging from 8°C to -20°C to evaluate its heat transfer properties, rheological behavior, and phase stability at varying pressures. Results indicate a significant enhancement in thermal conductivity (approximately 77% improvement over pure liquid CO₂) while maintaining favorable flow characteristics with minimal viscosity increase. Temperature-dependent testing demonstrated robust performance across the operational range, with excellent stability characteristics maintained at pressures between 20-40 bar. The findings support the viability of this nanofluid as an advanced heat transfer medium for district cooling and data center applications, particularly in water-scarce regions.

Keywords

  • Classification model
  • Data Mining
  • Feature selection algorithms
  • Fuzzy logic and Internal and External factors

References

  1. 1. Choi, S. U. S.; Eastman, J. A. Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME Publ. Fed. 1995, 231, 99–105. DOI:10.1115/1.1532008
  2. 2. Serroune, S. A. et al. Advanced Two-Stage Nanocomposite Membrane System for Methane and Carbon Dioxide Separation from Atmospheric Air. Int. J. Novel Res. Dev. 2024, 9 (10), 128–135. IJNRD Link
  3. 3. Serroune, S. A. et al. Advanced Two-Stage Nanocomposite Membrane System for Methane and Carbon Dioxide Separation from Atmospheric Air. SSRN 2024, 4982911. SSRN Preprint
  4. 4. KAIGEN Labs. Nano-Molecular Membrane Technology for Precision Methane Capture. White Paper 2024. KAIGEN Resource Hub
  5. 5. Serroune, S. A. et al. Development and Characterization of Advanced Nano-Coating with CeO₂, Al₂O₃, ZnO, and TiO₂ Nanoparticles. J. Nanomater. Sci. 2024, 7 (2), 45–68. DOI:10.1080/27660400.2024.1987612
  6. 6. Wang, X.-Q.; Mujumdar, A. S. Heat Transfer Characteristics of Nanofluids: A Review. Int. J. Therm. Sci. 2007, 46 (1), 1–19. DOI:10.1016/j.ijthermalsci.2006.06.010
  7. 7. Saidur, R.; Leong, K. Y.; Mohammed, H. A. A Review on Applications and Challenges of Nanofluids. Renew. Sustain. Energy Rev. 2011, 15 (3), 1646–1668. DOI:10.1016/j.rser.2010.11.035
  8. 8. Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 7th ed.; Wiley: Hoboken, 2011.
  9. 9. Singh, N. K. et al. Advanced Molecular Sieving Membranes for Atmospheric CO₂ Capture. J. Membr. Sci. 2024, 689, 122215. DOI:10.1016/j.memsci.2024.122215
  10. 10. International Desalination Association. 2021 Global Desalination Inventory. IDA Rep. 2021, 45–68.
  11. 11. Colebrook, C. F.; White, C. M. Experiments with Fluid Friction in Roughened Pipes. Proc. R. Soc. Lond. A 1937, 161 (906), 367–381. DOI:10.1098/rspa.1937.0150
  12. 12. Maxwell, J. C. A Treatise on Electricity and Magnetism, 3rd ed.; Clarendon Press: Oxford, 1892.
  13. 13. Zhang, X. et al. Graphene Oxide Dispersion Stability in Supercritical CO₂. Langmuir 2022, 38 (12), 3721–3733. DOI:10.1021/acs.langmuir.1c03244
  14. 14. GEIOS Consortium. Enhanced Quantum Geothermal Systems: Technical Specifications. EGS Tech. Bull. 2024, 12 (3), 1–45.
  15. 15. American Society of Mechanical Engineers. ASME B31.3-2024: Process Piping. ASME Press 2024.
  16. 16. International Organization for Standardization. ISO 80000-9:2023 Quantities and Units – Physical Chemistry and Molecular Physics. ISO Publ. 2023.
  17. 17. Hasselman, D. P. H.; Johnson, L. F. Effective Thermal Conductivity of Composites with Interfacial Thermal Barrier Resistance. J. Compos. Mater. 1987, 21 (6), 508–515. DOI:10.1177/002199838702100602
  18. 18. Buongiorno, J. et al. A Benchmark Study on the Thermal Conductivity of Nanofluids. J. Appl. Phys. 2009, 106 (9), 094312. DOI:10.1063/1.3245330
  19. 19. Hamilton, R. L.; Crosser, O. K. Thermal Conductivity of Heterogeneous Two-Component Systems. Ind. Eng. Chem. Fundam. 1962, 1 (3), 187–191. DOI:10.1021/i160003a005
  20. 20. Prasher, R.; Bhattacharya, P.; Phelan, P. E. Thermal Conductivity of Nanoscale Colloidal Solutions (Nanofluids). Phys. Rev. Lett. 2005, 94 (2), 025901. DOI:10.1103/PhysRevLett.94.025901
  21. 21. Li, Y.; Zhou, J.; Tung, S.; Schneider, E.; Xi, S. A Review on Development of Nanofluid Preparation and Characterization. Powder Technol. 2009, 196 (2), 89–101. DOI:10.1016/j.powtec.2009.07.025
  22. 22. Keblinski, P.; Phillpot, S. R.; Choi, S. U. S.; Eastman, J. A. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids). Int. J. Heat Mass Transf. 2002, 45 (4), 855–863. DOI:10.1016/S0017-9310(01)00175-2
  23. 23. Hummers, W. S.; Offeman, R. E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80 (6), 1339–1339. DOI:10.1021/ja01539a017
  24. 24. Grant Thornton. Total Cost of Ownership Analysis: District Cooling Systems in Gulf Cooperation Council Countries. Energy Econ. Report 2022, 1–73.