The calculated attenuated total reflection (ATR) for analyzing surface plasmon polaritons
Downloads
The electromagnetic waves propagate in the interface between metal and dielectric can be simply called surface plasmon polariton. The surface plasmon polaritons were produced by the coupling of incoming electromagnetic waves and collective vibrations of free charges on metal surface. The generation of surface polaritons may be done using attenuated total reflection (ATR) method which was based on total internal reflection. The method can be performed numerically by analyzing reflections on each involved interfaces. The generated surface plasmon polaritons were represented by the appearance of the dip in the ATR spectroscopy. In this paper, we presented the ATR spectroscopy for surface plasmon polaritons generated on gold-castor oil interface. The results showed the predicted dispersion relation from calculated ATR of the surface plasmons polaritons were in good agreement with the dispersion relation from the theory.
Downloads
Borstel, G., Falge, H. J. and Otto, A., Solid State Physics: Springer Tracts in Modern Physics Vol. 4, Ed. By G. Hohler (Springer-Verlag Berlin Heidelberg GmbH, New York, 1974) 107-148.
Ferry, V. E., Sweatlock, L. A., Pacifici, D. and Atwater, H. A., , “Plasmonic nanostructure design for efficient light coupling into solar cells”, Nano Letters 8 4391, 2008. (doi: 10.1021/nl8022548).
Garnet, J. C. M., “Colours in metal glasses and in metallic films”, Phil. Trans. R. Soc. Lond. 203, 385,1904 (doi 10.1098/rsta.1904.0024)
Gunawan, V. and Stamps, R. L., “Surface and bulk polaritons in PML-type magnetoelectric multiferroic with canted spins: TE and TM polarisation”, J. Phys: Condens. Matter 23, 105901, 2011. (doi:10.1088/0953-8984/23/10/105901/meta).
Gunawan, V. and Widiyandari, H., “Polaritons in magnetoelectric multiferroics films: Switching magnon polaritons using an electric field”, Ferroelectrics 510, 16-26, 2017. (doi: 10.1080/00150193.2017.1326286).
Gunawan, V. and Umiati, N. A. K., “Phonon polaritons in magnetoelectric multiferroics film: the possibility to drive surface modes using magnetic field”, Can. J. Phys. 99, 150-158, 2021. (doi:10.1139/cjp-2020-0081).
Jensen, M. R. F., Parker, T. J., Abraha K. and Tilley, D. R., “Experimental observation of magnetic surface polaritons in FeF2 by attenuated total reflection”, Phys. Rev. Lett. 75, 3756, 1995. (doi: 10.1103/PhysRevLett.75.3756).
Jensen, M. R. F., Feiven, S. A., Parker, T. J. and Camley, R. E., “Experimental determination of magnetic polariton dispersion curves in FeF2”, J. Phys.: Condens Matter 9, 7223, 1997. (doi: 10.1103/PhysRevB.55.2745).
Kabashin, A. V., Evans, P., Pastkovsky, S., Hendren, W., Wurtz, G. A., Atkinson, R., Pollard, R., Podolsky, V. A., and Zayats, A. V., “Plasmonic nanorod metamaterials for biosensing” Nat. Mat. 8, 867, 2010. (doi: 10.1038/nmat2546).
Kretschmann, E. and Raether, H., “Radiative decay of non radiative surface plasmon excited by light”, Z. Naturf. A 23 2135, 1968. (doi: 10.1515/zna-1968-1247).
Mie, G., “Contributions on the optics of turbid media, particularly coloidal metal solutions”, Ann. Phys. 25, 377,1908. (doi: 10.1002/andp.19083300302).
Nagpal, P., Lindquist, N. C., Oh, S. H. and Norris D. C., “Ultasmooth paterned metals for plasmonic metamaterials”, Science 325, 594, 2009, (doi: 10.1126/science 1174655).
O’Connor, D. and Zayats, A. V., “Data storage: The third plasmonic revolution”, Nat Nanotechnol 5 482, 2009. (doi:10.1038/nnano.2010.137)
Otto, A., “Excitation of nonradiative surface plasma waves by the method of frustated total reflection”, Z. Phys. 216 1530, 1968. (doi: 10.1007/BF01391532).
Torii, K, Koga, T., Sota, T., Azuhata, T., Chichibu, S. F. and Nakamura, S., “An atenuated total reflection study on the surface phonon polariton in GaN”, J. Phys.:Condens Matter 12, 7041, 2000. (doi: 10.1088/0953-8984/12/31/305).
Wood, R. W., “On a remarkable case of uneven distribution of light in a diffraction grating spectrum”, Phil. Mag.4, 396, 1902. (doi: 10.1080/14786440209462857)
Zayats, A. V. and Smolyaninov, I. I., “Near-field photonics: surface plasmon polaritons and localized surface plasmons”, J. Opt. A.: Pure Appl. Opt 5 S16 (2003). (doi: 10.1088/1464-4258/5/4/353).
Zhang, J., Zhang, L. and Xu, W., “Surface plasmon polaritons: physics and applications”, J. Phys. D.: Appl. Phys. 48 113001, 2012. (doi: 10.1088/0022-3727/45/11/113001).
Copyright (c) 2022 Vincensius Gunawan
This work is licensed under a Creative Commons Attribution 4.0 International License.