Hydrological Data Integration for Environmental Risk Assessment
Downloads
This study presents a systematic literature review aimed at integrating hydrological data into environmental risk assessment. The literature sources were obtained from Scopus, DOAJ, and Google Scholar, focusing on publications from the last 10 years. The discussed literature emphasizes the crucial role of hydrological data integration in enhancing the accuracy and quality of environmental risk assessments. The study details various proposed approaches, including a risk-based eco-hydrological approach, spatial geo-statistical techniques, the development of the meta-scientific-modeling (MSM) framework, automated assessment of local sensor networks, and the creation of web-based software platforms. The research findings illustrate the active efforts of researchers to find more effective and comprehensive ways of utilizing hydrological data in environmental risk evaluation. Each proposed approach has its strengths and limitations, with specific considerations related to data complexity, computational requirements, and analytical skills. In addition to highlighting the necessity of coordinated and integrated techniques to enhance future risk assessments, this study lays the groundwork for a thorough knowledge of the function that hydrological data integration plays in the context of environmental risk assessment.
Downloads
1. Aryal, J. (n.d.). Evaluation and Visualization of Hydrological Sensor Network : an Integrated Approach Using MODIS Images.
2. Brauman, K. A. (2015). Hydrologic ecosystem services: linking ecohydrologic processes to human well-being in water research and watershed management. Wiley Interdisciplinary Reviews: Water, 2(4), 345–358. https://doi.org/10.1002/WAT2.1081
3. Cui, X., Guo, X., Wang, Y., Wang, X., Zhu, W., Shi, J., Lin, C., & Gao, X. (2019). Application of remote sensing to water environmental processes under a changing climate. In Journal of Hydrology (Vol. 574, pp. 892–902). https://doi.org/10.1016/j.jhydrol.2019.04.078
4. Fatichi, S., Vivoni, E. R., Ogden, F. L., Ivanov, V. Y., Mirus, B., Gochis, D., Downer, C. W., Camporese, M., Davison, J. H., Ebel, B., Jones, N., Kim, J., Mascaro, G., Niswonger, R., Restrepo, P., Rigon, R., Shen, C., Sulis, M., & Tarboton, D. (2016). An overview of current applications, challenges, and future trends in distributed process-based models in hydrology. In Journal of Hydrology (Vol. 537, pp. 45–60). https://doi.org/10.1016/j.jhydrol.2016.03.026
5. Fotakis, D., Sidiropoulos, E., & Loukas, A. (2014). Integration of a hydrological model within a geographical information system: Application to a forest watershed. Water (Switzerland), 6(3), 500–516. https://doi.org/10.3390/w6030500
6. Girsang, N. A. P., Rahmatunnisa, M., & Rizkiyansyah, F. K. (2021). INTEGRITAS PENYELENGGARA PEMILU (Study Tentang Pemutakhiran Data Pemilih Di Kabupaten Simalungun Pada Pemilu Tahun 2019). Jurnal Ilmiah Muqoddimah: Jurnal Ilmu Sosial, Politik Dan Hummanioramaniora, 5(1), 125. https://doi.org/10.31604/jim.v5i1.2021.125-137
7. Guan, G., Wang, Y., Yang, L., Yue, J., Li, Q., Lin, J., & Liu, Q. (2022). Water-Quality Assessment and Pollution-Risk Early-Warning System Based on Web Crawler Technology and LSTM. International Journal of Environmental Research and Public Health, 19(18). https://doi.org/10.3390/ijerph191811818
8. Hiola, T. T., & Badjuka, B. Y. M. (2021). Health risk assessment of consuming mackerel scads (Decapterus macarellus) contaminated by mercury. AACL Bioflux, 14(5), 2987–2999.
9. Hristopulos, D. T., Varouchakis, E. A., Skøien, J. O., & Solomatine, D. (2020). Space–time models for hydrological and environmental applications. In Stochastic Environmental Research and Risk Assessment (Vol. 34, Issue 9, pp. 1285–1287). https://doi.org/10.1007/s00477-020-01830-z
10. Jayaprathiga, M., Cibin, R., & Sudheer, K. P. (2022). Reliability of Hydrology and Water Quality Simulations Using Global Scale Datasets. Journal of the American Water Resources Association, 58(3), 453–470. https://doi.org/10.1111/1752-1688.13006
11. Kaikkonen, L., Parviainen, T., Rahikainen, M., Uusitalo, L., & Lehikoinen, A. (2021). Bayesian Networks in Environmental Risk Assessment: A Review. Integrated Environmental Assessment and Management, 17(1), 62–78. https://doi.org/10.1002/ieam.4332
12. Larramendy, M. L., & Liwszyc, G. E. (2023). General Aspects – Current and Further Perspectives. In Bird and Reptile Species in Environmental Risk Assessment Strategies (pp. 1–5). https://doi.org/10.1039/bk9781837670765-00001
13. Magalhães, L., Peixoto, A., Manzato, G., & Bezerra, B. (2023). Risk Matrix of Hydrological Disasters Combining Rainfall Thresholds and Social-Environmental Criteria. Advances in Environmental and Engineering Research, 04(01), 1–16. https://doi.org/10.21926/aeer.2301019
14. Mandala, G. N., Kumar Verma, S., Rajagopal, N. K., Saranya, S., Verma, D., & Samatha, B. (2022). Risk Assessment Model for Quality Management System. MysuruCon 2022 - 2022 IEEE 2nd Mysore Sub Section International Conference. https://doi.org/10.1109/MysuruCon55714.2022.9972698
15. Marigómez, I. (2024). Environmental risk assessment, marine. In Encyclopedia of Toxicology (pp. 253–259). https://doi.org/10.1016/b978-0-12-824315-2.01094-0
16. Mcgregor, G. B., Marshall, J. C., Lobegeiger, J. S., Holloway, D., Menke, N., & Coysh, J. (2018). A Risk-Based Ecohydrological Approach to Assessing Environmental Flow Regimes. Environmental Management, 61(3), 358–374. https://doi.org/10.1007/s00267-017-0850-3
17. Pujol, L., Garambois, P. A., Monnier, J., Finaud-Guyot, P., Larnier, K., & Mosé, R. (2022). Integrated Hydraulic-Hydrological Assimilation Chain: Towards Multisource Data Fusion from River Network to Headwaters. In Springer Water (pp. 195–211). https://doi.org/10.1007/978-981-19-1600-7_12
18. Salas, D., Liang, X., Navarro, M., Liang, Y., & Luna, D. (2020). An open-data open-model framework for hydrological models’ integration, evaluation and application. Environmental Modelling and Software, 126. https://doi.org/10.1016/j.envsoft.2020.104622
19. Sege, J., Ghanem, M., Ahmad, W., Bader, H., & Rubin, Y. (2018). Distributed data collection and web-based integration for more efficient and informative groundwater pollution risk assessment. Environmental Modelling and Software, 100, 278–290. https://doi.org/10.1016/j.envsoft.2017.11.027
20. Sun, Y., Zhang, L., Liu, J., Lin, J., & Cui, Q. (2022). A Data Assimilation Approach to the Modeling of 3D Hydrodynamic Flow Velocity in River Reaches. Water (Switzerland), 14(22). https://doi.org/10.3390/w14223598
21. Teodosiu, C., Robu, B., Cojocariu, C., & Barjoveanu, G. (2015). Environmental impact and risk quantification based on selected water quality indicators. Natural Hazards, 75(1), 89–105. https://doi.org/10.1007/s11069-013-0637-7
22. Thakur, J. K., Singh, S. K., & Ekanthalu, V. S. (2017). Integrating remote sensing, geographic information systems and global positioning system techniques with hydrological modeling. In Applied Water Science (Vol. 7, Issue 4, pp. 1595–1608). https://doi.org/10.1007/s13201-016-0384-5
23. Virkki, V., Alanärä, E., Porkka, M., Ahopelto, L., Gleeson, T., Mohan, C., Wang-Erlandsson, L., Flörke, M., Gerten, D., Gosling, S. N., Hanasaki, N., Müller Schmied, H., Wanders, N., & Kummu, M. (2022). Globally widespread and increasing violations of environmental flow envelopes. Hydrology and Earth System Sciences, 26(12), 3315–3336. https://doi.org/10.5194/hess-26-3315-2022
24. Zhu, H., Yao, J., Meng, J., Cui, C., Wang, M., & Yang, R. (2023). A Method to Construct an Environmental Vulnerability Model Based on Multi-Source Data to Evaluate the Hazard of Short-Term Precipitation-Induced Flooding. Remote Sensing, 15(6). https://doi.org/10.3390/rs15061609
Copyright (c) 2025 Nurhayati, Mursal Ghazali, Syaharuddin, Ratri Retno Utami

This work is licensed under a Creative Commons Attribution 4.0 International License.