Advanced Two-Stage Nanocomposite Membrane System for Methane and Carbon Dioxide Separation from Atmospheric Air
Downloads
This paper presents an advanced two-stage nanocomposite membrane system designed to efficiently separate and capture methane (CH4) and carbon dioxide (CO2) from atmospheric air and water sources. The membrane system comprises a CO2-selective primary membrane and a CH4-selective secondary membrane, utilizing a hierarchical nanomaterials and polymers structure. The proposed system demonstrates unprecedented versatility, operating effectively across an extensive range of gas concentrations (>20% to <0.02%) and reducing CH4 levels from 100-500 ppm to 5-10 ppm in both aerobic and anaerobic conditions.
Performance metrics specify CO2 permeances of 200-2000 GPU and CO2/N2 selectivities of 30-500 at 57 °C and 1 atm feed pressure, surpassing the Robeson upper bound for traditional polymer membranes. The CH4-selective membrane achieves 500-2000 GPU permeances with CH4/CO2 selectivities >50. Furthermore, experimental validation over 1000 hours of continuous operation demonstrated 92% methane capture efficiency under challenging conditions (55 tons/hour methane content at 30 °C). The system's energy consumption of 0.3 kWh/kg of CH4 captured underscores its efficiency compared to traditional methods. This innovative membrane technology offers a promising solution for addressing critical ecological and industrial challenges associated with greenhouse gas emissions in the 21st century.
Downloads
1. Robeson, L.M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400.
2. Koros, W.J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297.
3. Galizia, M., Chi, W.S., Smith, Z.P., Merkel, T.C., Baker, R.W., & Freeman, B.D. (2017). 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 50(20), 7809-7843.
4. Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail, A.F., & Matsuura, T. (2014). State-of-the-art membrane-based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861.
5. Li, X., Liu, Y., Wang, J., Gascon, J., Li, J., & Van der Bruggen, B. (2021). Metal-organic framework-based membranes for liquid separation. Chemical Society Reviews, 50(18), 10229-10312.
6. Werber, J. R., Osuji, C. O., & Elimelech, M. (2022). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 7(1), 55-68.
7. Goh, P. S., & Ismail, A. F. (2021). Advances in electrospun nanofibers for water treatment: A comprehensive review. Chemical Engineering Journal, 408, 127496.
8. Yin, J., & Deng, B. (2021). Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 619, 118505.
9. Xu, Z., Liao, J., Tang, H., & Li, N. (2021). Antifouling thin film composite forward osmosis membranes by magnetic nanoparticles-assisted interfacial polymerization. Journal of Membrane Science, 620, 118851.
10. Kang, G. D., & Cao, Y. M. (2022). Development of antifouling reverse osmosis membranes for water treatment: A review. Water Research, 200, 117243.
11. Shen, Y., et al. (2019). Adv. Funct. Mater., 29(33), 1900417.
12. Sutrisna, P.D., et al. (2017). J. Membr. Sci., 524, 266-279.
13. Sabetghadam, A., et al. (2016). ACS Appl. Mater. Interfaces, 8(40), 26827-26836.
14. Deng, L., et al. (2009). J. Membr. Sci., 330(1-2), 55-64.
15. Kim, H.W., et al. (2013). Science, 342(6154), 91-95.
16. Xiao, G., Lin, Y., Lin, H., Dai, M., Chen, L., Jiang, X., ... & Zhang, W. (2022). Bioinspired self-assembled Fe/Cu-phenolic building blocks of hierarchical porous biomass-derived carbon aerogels for enhanced electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 128932.
17. Xiao, G., Lin, H., Lin, Y., Chen, L., Jiang, X., Cao, X., ... & Zhang, W. (2022). Self-assembled hierarchical metal–polyphenol-coordinated hybrid 2D Co–C TA@ gC 3 N 4 heterostructured nanosheets for efficient electrocatalytic oxygen reduction. Catalysis Science & Technology, 12(14), 4653-4661.
Copyright (c) 2024 Shad Abdelmoumen SERROUNE, Nano GEIOS, KAIGEN, Dr. Ir. Khasani S.T., Hicham SERROUNE, Hyungson LEE, Ryan Lee SANGHO, Lee Dong KYU, Lee Young SOO
This work is licensed under a Creative Commons Attribution 4.0 International License.