Abstract

This paper presents an advanced two-stage nanocomposite membrane system designed to efficiently separate and capture methane (CH4) and carbon dioxide (CO2) from atmospheric air and water sources. The membrane system comprises a CO2-selective primary membrane and a CH4-selective secondary membrane, utilizing a hierarchical nanomaterials and polymers structure. The proposed system demonstrates unprecedented versatility, operating effectively across an extensive range of gas concentrations (>20% to <0.02%) and reducing CH4 levels from 100-500 ppm to 5-10 ppm in both aerobic and anaerobic conditions.

 

Performance metrics specify CO2 permeances of 200-2000 GPU and CO2/N2 selectivities of 30-500 at 57 °C and 1 atm feed pressure, surpassing the Robeson upper bound for traditional polymer membranes. The CH4-selective membrane achieves 500-2000 GPU permeances with CH4/CO2 selectivities >50. Furthermore, experimental validation over 1000 hours of continuous operation demonstrated 92% methane capture efficiency under challenging conditions (55 tons/hour methane content at 30 °C). The system's energy consumption of 0.3 kWh/kg of CH4 captured underscores its efficiency compared to traditional methods. This innovative membrane technology offers a promising solution for addressing critical ecological and industrial challenges associated with greenhouse gas emissions in the 21st century.

Keywords

  • Probiotic
  • supplements
  • drinks
  • scrutinize
  • lactobacillus

References

  1. 1. Robeson, L.M. (2008). The upper bound revisited. Journal of Membrane Science, 320(1-2), 390-400.
  2. 2. Koros, W.J., & Zhang, C. (2017). Materials for next-generation molecularly selective synthetic membranes. Nature Materials, 16(3), 289-297.
  3. 3. Galizia, M., Chi, W.S., Smith, Z.P., Merkel, T.C., Baker, R.W., & Freeman, B.D. (2017). 50th Anniversary Perspective: Polymers and Mixed Matrix Membranes for Gas and Vapor Separation: A Review and Prospective Opportunities. Macromolecules, 50(20), 7809-7843.
  4. 4. Rezakazemi, M., Ebadi Amooghin, A., Montazer-Rahmati, M.M., Ismail, A.F., & Matsuura, T. (2014). State-of-the-art membrane-based CO2 separation using mixed matrix membranes (MMMs): An overview on current status and future directions. Progress in Polymer Science, 39(5), 817-861.
  5. 5. Li, X., Liu, Y., Wang, J., Gascon, J., Li, J., & Van der Bruggen, B. (2021). Metal-organic framework-based membranes for liquid separation. Chemical Society Reviews, 50(18), 10229-10312.
  6. 6. Werber, J. R., Osuji, C. O., & Elimelech, M. (2022). Materials for next-generation desalination and water purification membranes. Nature Reviews Materials, 7(1), 55-68.
  7. 7. Goh, P. S., & Ismail, A. F. (2021). Advances in electrospun nanofibers for water treatment: A comprehensive review. Chemical Engineering Journal, 408, 127496.
  8. 8. Yin, J., & Deng, B. (2021). Polymer-matrix nanocomposite membranes for water treatment. Journal of Membrane Science, 619, 118505.
  9. 9. Xu, Z., Liao, J., Tang, H., & Li, N. (2021). Antifouling thin film composite forward osmosis membranes by magnetic nanoparticles-assisted interfacial polymerization. Journal of Membrane Science, 620, 118851.
  10. 10. Kang, G. D., & Cao, Y. M. (2022). Development of antifouling reverse osmosis membranes for water treatment: A review. Water Research, 200, 117243.
  11. 11. Shen, Y., et al. (2019). Adv. Funct. Mater., 29(33), 1900417.
  12. 12. Sutrisna, P.D., et al. (2017). J. Membr. Sci., 524, 266-279.
  13. 13. Sabetghadam, A., et al. (2016). ACS Appl. Mater. Interfaces, 8(40), 26827-26836.
  14. 14. Deng, L., et al. (2009). J. Membr. Sci., 330(1-2), 55-64.
  15. 15. Kim, H.W., et al. (2013). Science, 342(6154), 91-95.
  16. 16. Xiao, G., Lin, Y., Lin, H., Dai, M., Chen, L., Jiang, X., ... & Zhang, W. (2022). Bioinspired self-assembled Fe/Cu-phenolic building blocks of hierarchical porous biomass-derived carbon aerogels for enhanced electrocatalytic oxygen reduction. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 648, 128932.
  17. 17. Xiao, G., Lin, H., Lin, Y., Chen, L., Jiang, X., Cao, X., ... & Zhang, W. (2022). Self-assembled hierarchical metal–polyphenol-coordinated hybrid 2D Co–C TA@ gC 3 N 4 heterostructured nanosheets for efficient electrocatalytic oxygen reduction. Catalysis Science & Technology, 12(14), 4653-4661.