Abstract
In this paper, we study the existence of solutions for nonlinear parabolic equations with natural growth terms in Musielak spaces ∂u/∂t+A(u)+g(x,t,u,∇u)+H(x,t,∇u)= f in Q where A(u)=- div a(x,t,u,∇u), is a Leary lions operator type, g(x,t,u,∇u) is a nonlinear with the sing condition but any restriction on its growth u ,H(x,t,∇u) is only growing at most at |∇u|Keywords
- Musielek-Orlics Spaces
- nonlinear parabolic equation
- natural growth terms
References
- Adams, R. (1975). Sobolev spaces. AC, Press, New York.
- Ahmed Oubeid, M. L., Benkirane, A., & Ould Mohamedhen val, M. (2013). Nonlinear elliptic equations involving measur data in Musielak-Orlicz-Sobolev spaces. Jour. Abstr. Differ. Equ. Appl., 4(1), 43-57.
- Ahmed Oubeid, M. L., Benkirane, A., & Sidi El vally, M. (2014). Parabolic equations in Musielak- Orlicz-Sobolev spaces. Int. J. Analysis Appl., 4(2), 174-191.
- M.Al-Hawmi, A. Benkirane, H. Hjiaj and A. Touzani, Existence and Unique- ness of Entropy Solutions for some Nonlinear Elliptic Unilateral Problems in Musielak-Orlicz-Sobolev Spaces, Ann. Univ. Craiova, Math. Computer Sci. Ser. 44(1)(2017), 1-20.
- Benkirane, A., & Ould Mohamedhen val, M. (2013). An existence result for nonlinear elliptic equations in Musielak-Orlicz-Sobolev spaces. Bull. Belg. Math. Soc. Simon Stevin, 20(1), 57-75.
- Benkirane, A., Douieb, J., & Ould Mohamedhen val, M. (2011). An approxi- mation theorem in Musielak- Orlicz-Sobolev spaces. Comment. Math. (Prace Matem.), 51(1), 109-120.
- Benkirane, A., & Ould Mohamedhen val, M. (2012). Some approximation properties in Musielak- Orlicz-Sobolev spaces. Thai.J. Math., 10(2), 371-381.
- Benkirane, A., & Ould Mohamedhen val, M. Variational inequalities in Musielak-Orlicz- Sobolev spaces. (Reference [7] - Full details not provided in image).
- Boccardo, L., & Murat, F. (1989). Strongly nonlinear Cauchy problems with gradient dependent lower order nonlinearity. Pitman Research Notes in Math- ematics, 208, 247-254.
- Boccardo, L., & Murat, F. (1992). Almost everywhere convergence of the gradients. Nonlinear Anal., 19(6), 581-597.
- Br´ezis, H. (1992). Analyse fonctionnelle,th´eorie et applications, 3rd ed. Mas- son, Paris.
- Br´ezis, H., & Browder, F. E. (1979). Strongly nonlinear parabolic initial boundary value problems. Proc. Nat. Acad. Sci. U. S. A., 76, 38-40.
- Dall’aglio, A., & Orsina, L. (1996). Nonlinear parabolic equations with natural growth conditions and L1 data. Nonlinear Anal. TMA, 27(1), 59-73.
- Donaldson, T. (1974). Inhomogeneous Orlicz-Sobolev spaces and nonlinear parabolic initial boundary value problems. J. Differential Equations, 16, 201- 256.
- Elmahi, A. (2002). Compactness results in inhomogeneous Orlicz-Sobolev spaces. Lecture Notes in Pure and Applied Mathematics, 229, 207-221.
- Elmahi, A. (2002). Strongly nonlinear parabolic initial-boundary value prob- lems in Orlicz spaces. Electron. J. Differential Equations, 09, 203-220.
- Elmahi, A., & Meskine, D. (2005). Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Analysis, 60, 1-35.
- Elmahi, A., & Meskine, D. (2005). Parabolic equations in orlicz spaces. J. London Math. Soc., 72(2), 410-428.
- Gossez, J. P. (1982). Somme approximation properties in Orlicz Sobolev spaces. Studia Math., 74, 17-24.
- Landes, R., & Mustonen, V. (1981). On the existence of weak solutions for quasilinear parabolic initial-boundary value problems. Proc. Roy. Soc. Edin- burgh Sect. A, 89, 217-237.
- Landes, R., & Mustonen, V. (1987). A strongly nonlinear parabolic initial- boundary value problem. Ark. Mat., 25, 29-40.
- Landes, R., & Mustonen, V. (1994). On parabolic initial-boundary value prob- lems with critical growth for the gradient. Ann. Inst. H. Poincar´e, 11(2), 135- 158.
- Lions, J. L. (1969). Quelques m´ethodes de r´esolution des probl`emes aux limites non lin´eaires. Gauthier-Villars.
- Musielak, J. (1983). Modular spaces and Orlicz spaces. Lecture Notes in Math. 1034.
- Robert, J. (1974). In´equations variationnelles paraboliques fortement non lin´eaires. J. Math. Pures Appl., 53, 299-321.
- Sidi El Vally, M. (2013). Strongly Nonlinear Elliptic Problems in Musielak- Orlicz-Sobolev Spaces. A. D. S. A. Volume 8, Number 1, 115-124.
- Simon, J. (1987). Compact sets in the space Lp(0, T;B). Ann. Mat. Pura. Appl., 146, 65-96.